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Abstract
As woody plants provide much of the trophic basis for food webs in forests their species richness, but also 
stand age and numerous further variables such as vegetation structure, soil properties and elevation can 
shape assemblages of ground beetles (Coleoptera: Carabidae). However, the combined impact of these 
numerous variables on ground beetle diversity and community structure has rarely been studied simultane-
ously. Therefore, ground beetles were studied in 27 plots in a highly diverse and structurally heterogene-
ous subtropical forest ecosystem, the Gutianshan National Park (southeast China) using pitfall traps and 
flight interception traps. Both trapping methods collected partly overlapping species spectra. The arboreal 
fauna was dominated by lebiines and to a smaller extent by tiger beetles and platynines; the epigeic fauna 
comprised mostly representatives of the genus Carabus and numerous tribes, especially anisodactylines, 
pterostichines, and sphodrines. Ground beetle species richness, abundance, and biomass of the pitfall trap 
catches were analyzed with generalized linear mixed models (GLMMs), fitted with seven environmental 
variables. Four of these variables influenced the ground beetle assemblages: Canopy cover, herb cover, pH-
value of the topsoil and elevation. Contrary to our expectations, woody plant species richness and stand 
age did not significantly affect ground beetle assemblages. Thus, ground beetles seem to respond differently 
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to environmental variables than ants and spiders, two other predominantly predatory arthropod groups 
that were studied on the same plots in our study area and which showed distinct relationships with woody 
plant richness. Our results highlight the need to study a wider range of taxa to achieve a better understand-
ing of how environmental changes affect species assemblages and their functioning in forest ecosystems.

Keywords
Abundance, BEF-China, biomass, canopy cover, Carabidae, elevational gradient, herb cover, pH-value, 
species richness

Introduction

Tropical and subtropical forests are among the world´s ecosystems with the highest 
biodiversity. A substantial part of this biodiversity consists of arthropods, which are 
involved in many ecosystem processes (Basset et al. 2012; Schuldt et al. 2015b; Stork 
2018). Numerous biotic and abiotic variables can influence their diversity, but also the 
abundance and biomass of these arthropods (Rainio and Niemela 2003; Mottl et al. 
2020; Marrec et al. 2021). Trees structure forest ecosystems and, as they are the most 
important primary producers of biomass, they provide the basis for much of the food 
web consisting of decomposers, herbivores, and predators. As many biodiversity pat-
terns in forest ecosystems seem to be influenced by bottom-up processes (Gruner 2004; 
Wu et al. 2013; Korboulewsky et al. 2016), woody plant species richness can have a 
strong impact on higher trophic levels (Schuldt et al. 2017). As a consequence, the di-
versity of herbivores may be strongly determined by the diversity of trees (Riihimaki et 
al. 2005; Wang et al. 2019). Also at higher trophic levels (predators, parasitoids), there 
seem to be bottom-up effects from woody plant diversity (Strong et al. 1984; Lefcheck 
et al. 2015; Schuldt et al. 2015a). However, such relationships between plant diversity 
and arthropods are not always present or apparent (Vehvilainen et al. 2008).

To analyze the effects of woody plant species richness on arthropod diversity in a 
real-world forest ecosystem, it is important to consider that environmental variables 
can also influence communities or assemblages of arthropods (Thiele 1977; Bonn and 
Schröder 2001). In experiments with manipulated woody plant species richness, pos-
sible biodiversity effects can be better determined (Loreau et al. 2001; Duffy 2009); 
however, conclusions from such manipulative experimental approaches cannot simply 
be transferred to forests with long-lasting maturation processes, in particular because 
experiments are usually not much older than a few decades. Therefore, real-world eco-
systems are of particular importance for the study of arthropod communities (or as-
semblages) in forests of different stand ages.

Ground beetles (Coleoptera: Carabidae) represent a highly diverse predatory taxon 
and are typical of forest ecosystems across latitudinal gradients (Zou et al. 2013; Nolte 
et al. 2017; Garcia-Tejero et al. 2018). Moreover, ground beetles in temperate and bo-
real regions are known to be sensitive to numerous edaphic variables (e.g., pH-value: 
Paje and Mossakowski 1984; moisture: Antvogel and Bonn 2001). Even effects of 
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land-use legacy, tree age, vegetation structure and succession are known (Terrell-Nield 
1990; Assmann 1999; Jelaska et al. 2011; Marrec et al. 2021). In general, ground 
beetles are considered as a well-known taxon for bio-indication since numerous species 
react sensitively to small changes in environmental variables (Koivula 2011).

The shaping variables of ground beetle assemblages in global biodiversity forest 
hotspots are poorly understood. In particular, the ground beetles of the southeast Chi-
nese subtropics with summer rainfalls, which host particularly species-rich forests (Liu 
et al. 2003; Tang 2006), provide an interesting opportunity for study. We worked 
in Gutianshan National Park (Zhejiang, southeast China) that covers an area with 
remarkable subtropical tree and shrub species diversity. Relationships between biodi-
versity and ecosystem functions and the effects of environmental variables have been 
studied extensively in this area (e.g., Schuldt et al. 2010; Lang et al. 2012; Staab et al. 
2014; Eichenberg et al. 2015; Zou et al. 2015; O’Brien et al. 2016; Brezzi et al. 2017). 
However, while the main abiotic and biotic drivers potentially shaping herbivore, de-
composer and predator diversities have been studied (e.g., Schuldt et al. 2011; Staab 
et al. 2014; Schuldt et al. 2015a; Binkenstein et al. 2018; Staab et al. 2021) studies on 
ground beetles are still lacking for this National Park.

A study of ground beetles would reveal not only how this arthropod taxon responds 
to environmental variables, but the comparison with other important taxa (esp. spiders 
and ants) could provide a better understanding of how environmental variables affect 
the abundance and species diversity of predatory arthropods. Thus, since environmen-
tal variables can potentially influence ground beetle assemblages, we hypothesize that 
abundance, richness, and biomass of ground beetles increases with (H1) woody plant 
species richness and (H2) stand age in a subtropical forest in China. Moreover, we ex-
pect that (H3) the structural richness of vegetation and abiotic variables affect ground 
beetle abundance, richness, and biomass. Specifically, we investigate whether woody 
plant species richness, stand age of forests plots, structural richness of vegetation (cover 
of canopy and herb layer), and abiotic variables (elevation and soil pH) influence abun-
dance, species richness, and biomass of ground beetles.

Material and methods

Study area and plots

Gutianshan National Park (Gutianshan NP), formerly Gutianshan National Nature Re-
serve, is located in the western part of Zhejiang Province in southeast China (29°14'N, 
118°07'E). The park is approximately 81 square kilometers in size and was established 
in 1975, first as a National Forest Reserve, to preserve parts of the old‐growth ever-
green broad‐leaved forest in the region. The climate is typical for subtropical areas with 
an annual mean temperature of 15.3 °C and ~2000 mm mean precipitation per year, 
occurring mostly between March and September (Yu et al. 2001). Further meteoro-
logical information is provided by Bruelheide et al. (2011) or cited therein. The park 



Pascale Zumstein et al.  /  ZooKeys 1044: 907–927 (2021)910

is characterized by a mixed broad-leaved forest composed of deciduous and evergreen 
tree species, and in which Castanopsis eyrei (Champion & Bentham, 1845) and Schima 
superba (Gardner & Champion, 1849) are the prevailing tree species (Hu and Yu 2008; 
Legendre et al. 2009). Most stands consist of secondary forest, with maximum ages of 
trees ≤ 180 years. The park is located in a mountain range with elevations varying be-
tween 300 and 1260 m above sea level. Our study focused on stands ranging from 251 
to 903 m a.s.l. The local rock is granitic and thus the topsoil pH-values ranges from 
5.5 to 6.5 (Bruelheide et al. 2011).

In 2008, 27 study plots, each measuring 30 m × 30 m, were established by a re-
search consortium of Chinese and European scientists (Bruelheide et al. 2011). The 
plots were randomly distributed throughout the park, excluding sites with slopes > 55°. 
The plots included gradients of woody plant species richness (25–69 trees and shrub 
species per plot) and stand age (21–115 years). Further information on plot character-
istics and study design is provided by Bruelheide et al. (2011).

Pitfall trapping

We sampled ground beetles using four pitfall traps in each plot, installed in the corners 
of the central 10 m × 10 m square (resulting in 108 traps). Traps were plastic cups 
with a diameter of 8.5 cm and a capacity of ~550 ml filled with 150 ml of preserving 
solution (40% ethanol, 20% glycerol, 10% acetic acid, 30% water). They were open 
continuously during the main vegetation period in 2009 (end of March to the begin-
ning of September). Traps were emptied fortnightly (in total ten collections per trap) 
and catches were preserved in 70% ethanol until identification (Schuldt et al. 2011). 
Flight interception traps were installed close to the pitfall traps in 2010 (Schuldt et 
al. 2015a; Staab et al. 2021). Ground beetles were sorted and body length was meas-
ured for biomass calculation (see section Statistical analysis). Specimens were identi-
fied to species level or classified to morphospecies by carabid taxonomists (David W. 
Wrase, Thierry Deuve, and Thorsten Assmann). Results from such a “morphospecies 
approach” show high correlation to true species diversity (Oliver and Beattie 1996). 
Hereafter, we use the term species for both diagnosed species and morphospecies to 
characterize our catches.

Environmental data

During plot establishment, a comprehensive set of environmental variables of biotic 
and abiotic habitat characteristics was collected (Bruelheide et al. 2011). We asked if 
seven variables, known to influence ground beetles assemblages (e.g., Assmann 1999; 
Antvogel and Bonn 2001; Marrec et al. 2021) could predict the abundance, species 
richness and biomass of ground beetles. The age of the forest included in each plot was 
estimated using stem core measurements of the tree with the fifth largest diameter at 
breast height within each plot. Woody plant species richness was determined as the 
number of all tree and shrub species represented by individuals larger than 1 m in the 
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plot (Bruelheide et al. 2011). Species richness and abundance of the herbaceous layer 
were estimated for all herb species smaller than 1 m height in the inner 10 m × 10 m 
subplots (Both et al. 2011). Canopy cover (%), herb cover (%), elevation (meters 
a.s.l.), and pH-value of the topsoil (0–5 cm; taken from nine dried and sieved soil 
samples per plot, pooled and measured potentiometrically) were additionally assessed 
as plot characteristics (see Bruelheide et al. (2011) for details).

Statistical analysis

All statistical analyses were conducted using the packages glmmTMB (Brooks et al. 
2017) and DHARMa (Hartig 2020) in R 3.6.3 (http://www.R-project.org). We ap-
plied generalized linear mixed models (GLMMs) to assess the effects of biotic (woody 
species richness, stand age, canopy and herb cover, herb species richness) and abiotic 
(topsoil pH-value, elevation) stand conditions (i.e., plot characteristics) on the abun-
dance, species richness and biomass of ground beetles. Plot identity was used as a ran-
dom factor to account for the nested data structure (traps nested in study plots). Abun-
dance and species richness data were modelled with a Poisson distribution and log-link 
function. There was no indication of overdispersion in the data for either abundance 
(p = 0.25) or species richness (p = 0.20). For the biomass data, we applied a Gamma 
distribution with a log-link and added a value of 0.01 to the observed biomass prior to 
model fitting to ensure the convergence of the algorithm. Ground beetle biomass was 
calculated according to the following formula:

ln y = -8.92804283 + 2.5554921 ln x,

where: x is the measured body length of the specimen and y is the estimated body 
weight of the individual (Schwerk and Szyszko 2007). The calculated biomass esti-
mates were then summed over all individuals per plot.

Model selection was based on likelihood-ratio tests starting with a fully saturated 
model that included all predictors and the interaction between woody species richness 
and stand age to test, if possible, species richness effects depended on the age of the 
forest plots. We sequentially removed non-significant (p > 0.05) terms and tested for 
assumptions of the best-fitting model following (Zuur et al. 2009). Prior to analysis, 
all predictor variables were standardized (mean = 0, SD = 1) and tested for critical cor-
relations (all variance inflation factors were < 1.75).

Results

Number of species, abundance, and biomass

In total, we caught 258 ground beetle specimens in the pitfall traps, belonging to 
22 species (Table 1). Catches ranged from two to 27 specimens per plot (mean 

http://www.R-project.org
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9.6 ± 1.19 SE), based on a relatively low number of individuals (2.4 ± 0.22) per trap. 
As expected, species richness was strongly correlated with abundance (Pearson correla-
tion coefficient r = 0.85, p ≤ 0.001). Biomass of captured ground beetles ranged from 
0.15 to 10.63 g per plot. The average biomass per plot was 3.11 g (± 0.54 SE).

The number of ground beetle specimens in flight interception traps was lower 
than in pitfall traps. In total, we caught 49 individuals of six species (Table 2), three 
of which were recorded also by the pitfall traps on the forest floor. As we caught 
few ground beetles in the flight interception traps, we performed further analyses 
only with the catches of the pitfall traps. Although there was overlap in species spec-
tra, the catches of the two trapping methods differed strongly. Species of the genus 

Table 1. Collected ground beetles from pitfall traps of 27 plots in Gutianshan NP. For classification, we 
followed the systematics of the Palearctic catalogue (Löbl and Löbl 2017). Abundance (No.) and body size 
(mean body size if more than one individual caught) is given for each (morpho-) species. The elevation 
data refer to the highest and lowest plots where the ground beetles were caught.

Tribe (Morpho-) Species No. Size (mm) Elevation (m a.s.l.)
Anisodactylini undet. spec. 1 60 8.9 348–903

undet. spec. 2 3 8 639
Carabini Carabus (Apotomopterus) davidis Deyrolle, 1878 5 35 566–679

Carabus (Isiocarabus) kiukiangensis Bates, 1888 20 30 348–903
Carabus (Damaster) lafossei Feisthamel, 1845 5 42 566–679

Brachinini Pheropsophus (Stenaptinus) beckeri Jedlicka, 1930 1 14 647
Harpalini Amara spec. 1 1 8 542

Harpalus spec. 1 1 12 617
Lebiini Calleida (Callidiula) spec. 1 1 12 617

Lachnoderma asperum Bates, 1883 1 8 880
Pericalina, undet. 1 1 5 617

Pentagonicini Pentagonica spec. 1 10 4.5 251–679
Pentagonica spec. 2 1 5 542

Perigonini Perigona spec. 1 4 3 542–720
Pterostichini Lesticus spec. 1 7 25.3 590–903

Lesticus spec. 2 43 28.1 251–903
Pterostichus spec. 1 47 24.8 251–903
Pterostichus spec. 2 3 11 419–670

Sphodrini Synuchus spec. 1 32 13.7 251–679
Synuchus spec. 2 10 10.9 251–903

Cicindelini Cylindera (Ifasina) kaleea Bates, 1863 1 9 880
Collyridini Tricondyla macrodera Chaudoir, 1861 1 19 566

Table 2. Collected ground beetles from flight interception traps of 27 plots in Gutianshan NP. For clas-
sification, we followed Löbl and Löbl (2017). Abundance (No.) and body size (mean body size if more 
than one individual caught) given for each (morpho-) species.

Tribe (Morpho-) Species No. Size (mm)
Lebiini Lachnoderma asperum Bates, 1883 1 8

Lioptera erotyloides Bates, 1883 1 13
Coptodera (Coptoderina) spec. 1 42 7.5

Pentagonicini Pentagonica spec. 1 2 4.5
Platynini undet. spec. 1 1 8
Collyridini Tricondyla macrodera Chaudoir, 1861 2 19
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Carabus and the tribes Anisodactylini and Pterostichini were caught exclusively in 
the pitfall traps; and lebiines were more abundant in the flight interception traps 
(Tables 1, 2; Fig. 4).

Ground beetle assemblages and environmental variables

Four of the seven environmental variables tested for effects on ground beetles in gener-
alized linear mixed models were significantly related to the ground beetle assemblages. 
Canopy cover had a positive influence on species richness, abundance, and biomass 
of ground beetles (Table 3, Figs 1A, 2A, 3A); however, herb cover influenced ground 
beetle species richness and abundance negatively (Table 3, Figs 1B, 2B). In addition, 
ground beetle abundance decreased significantly with increasing soil pH (Table 3, Fig. 
1C). Finally, ground beetle biomass significantly increased with elevation (Table 3, 
Fig. 3B). This is related to the presence of Carabus species, the ground beetles with the 
largest body lengths in our study, especially at higher elevations. The biomass of repre-

Table 3. Results from mixed-effects models for ground beetle abundance, species richness, and biomass. 
P-values were obtained from likelihood-ratio tests starting with a full-saturated model and removing non-
significant (p > 0.05) terms sequentially. Significant predictors (p < 0.05) are indicated in bold.

Abundance Species richness Biomass
χ² p-value χ² p-value χ² p-value

Woody species richness (WSR) 0.07 0.787 0.04 0.849 1.44 0.230
Stand age 0.33 0.565 0.00 0.961 1.17 0.280
Canopy cover 4.28 0.039 3.90 0.048 4.98 0.026
Herb cover 4.67 0.031 5.98 0.014 0.60 0.438
Herb species richness 1.60 0.206 0.89 0.345 0.18 0.673
pH-value (topsoil) 5.30 0.021 3.64 0.056 0.97 0.324
Elevation 0.39 0.531 0.18 0.668 14.71 <0.001
WSR * stand age 0.01 0.941 0.19 0.664 2.41 0.120

Figure 1. Relationships between ground beetle abundance and canopy cover (A), herb cover (B) and 
pH-value of the soil (C). Black lines indicate significant relationships at p < 0.05 obtained from mixed-ef-
fects models (keeping other significant predictors fixed at their means) with grey areas indicating the 95% 
confidence intervals. Points represent observed values per trap. Note that some traps had similar abun-
dance and predictor values. The fixed-effects explained 22% of the variation in ground beetle abundance.
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sentatives of the genus Carabus was strongly correlated with elevation (Pearson correla-
tion coefficient r = 0.65, p ≤ 0.001). The biomass of the representatives of the tribes 
Pterostichini, which included species with the second largest individuals, however, was 

Figure 2. Relationships between ground beetle species richness and canopy cover (A) and herb cover 
(B). Black lines indicate significant relationships at p < 0.05 obtained from mixed-effects models (keeping 
other significant predictors fixed at their means) with grey areas indicating the 95% confidence intervals. 
Points represent observed values per trap. Note that some traps had similar richness and predictor values. 
The fixed-effects explained 12% of the variation in ground beetle species richness.

Figure 3. Relationships between ground beetle biomass and canopy cover (A) and herb cover (B). Black 
lines indicate significant relationships at p < 0.05 obtained from mixed-effects models (keeping other 
significant predictors fixed at their means) with grey areas indicating the 95% confidence intervals. Points 
(slightly jittered to improve visibility) represent observed values per trap. The fixed-effects explained 30% 
of the variation in ground beetle biomass.
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Figure 4. Representatives of ground beetles from pitfall traps and flight interception traps in Gutianshan 
NP A Carabus kiukiangensis B Carabus davidis C Lioptera erotyloides D Tricondyla macrodera.

A B

C D
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not significantly correlated with elevation (r = 0.26, p > 0.05). The same was true for 
the Anisodactylini (r = 0.005, p > 0.05) which were numerous in terms of individuals 
(n = 63). Neither species richness of woody plants and of herbs nor stand age signifi-
cantly influenced any characteristic of the ground beetle assemblages (Table 3).

Discussion

Our study revealed that four environmental variables impacted on ground beetle 
assemblages at our sample sites. Contrary to our expectations, woody plant species 
richness (H1) and stand age (H2) did not influence ground beetle assemblages in 
this study. We did corroborate H3, as higher canopy cover led to increased species 
richness, abundance, and biomass of ground beetles, and because ground beetle abun-
dance and species richness decreased with higher herb cover. Moreover, soil pH nega-
tively influenced ground beetle abundance, and greater biomass of beetles was found 
at higher elevations.

Vegetation effects and ground beetle assemblages

Classical ecological theory such as the “enemies” hypothesis (Root 1973; Staab and 
Schuldt 2020), predict higher predator abundance and diversity with increasing plant 
diversity caused by different mechanisms at herbivore and predator trophic levels. This 
theory has been corroborated in other studies, especially in non-forest ecosystems (An-
dow 1991; Haddad et al. 2009). Furthermore, Jouveau et al. (2020) demonstrated 
positive and additive effects of vegetation diversity (understory, canopy and surround-
ing scales) on the density of ground beetles in a tree diversity experiment with planted 
tree individuals. Nonetheless, with increasing diversity of an ecosystem, mixed results 
are often obtained. For example, some studies postulate positive relationships between 
plant diversity and ground beetles, while other studies show no or negative relation-
ships (Vehvilainen et al. 2008; Worthen and Merriman 2013; Yeeles et al. 2017; Zou 
et al. 2019).

We found no relationship between woody plant species richness and species num-
bers, abundance, or biomass of ground beetles in Gutianshan NP. This result is con-
sistent with those from numerous other studies on plants and arthropods, especially 
ground beetles (Wolters et al. 2006; Harry et al. 2019; Corcos et al. 2021). Ground-
dwelling predators do not directly depend on vegetation, while most herbivores de-
pend directly on host plant selection. This difference alone may result in different pat-
terns for the two trophic groups. It is primarily the structural features of vegetation that 
increase with increasing woody plant species diversity (Bruelheide et al. 2011; Schuldt 
et al. 2019) that would be expected to affect predator assemblages. Such structural 
patterns, in turn, influence microclimatic factors such as temperature, humidity, and 
light availability and thus the activity and distribution of species such as carabid beetles 
(Work et al. 2011). Nevertheless, the non-significant results of the mixed-effects model 
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provide no support for relationships between woody plant species richness and ground 
beetle assemblages in Gutianshan NP. However, previous studies of epigeic arthropods 
in our study plots found mixed evidence of relationships with woody plant species 
richness. The relationship for spiders was negative but positive for predatory ants, with 
no relationship for omnivorous ants (Schuldt et al. 2011; Staab et al. 2014).

The positive relationship between woody plant and ground beetle diversity found 
by Zou et al. (2019) is limited to mature forests in a study area in temperate China. 
For secondary forests, no correlation was found, which the authors attributed to the 
lower forest age. The forest in Gutianshan NP is classified as secondary forest, because 
it was previously used agriculturally (Bruelheide et al. 2011). Compared to the for-
ests studied by Zou et al. (2019), the older plots in Gutianshan NP closely resemble 
mature stands. However, we found no relationship between ground beetle richness 
and woody plant species diversity in older stands in Gutianshan NP. Possibly, these 
forest plots are not old enough to have fostered a reasonably distinct natural ground 
beetle community.

Greater closure of the canopy layer was associated with more beetle species and 
specimens. However, our results contrast findings from numerous studies in forests of 
boreal, temperate and Mediterranean climate zones, according to which the number of 
ground beetle species increases with decreasing canopy cover (Koivula et al. 2002; Ta-
boada et al. 2008; Thorn et al. 2016). These findings can be explained (at least partly) 
by the presence of more open habitat species of ground beetles in addition to the forest 
species in open or structural-rich forest sites (Heliölä et al. 2001; Magura et al. 2001). 
Nonetheless, if open habitat specialists are rare in the study region and simultaneously 
forest specialists avoid more open patches in Gutianshan NP, beetle catches would be 
lower in plots with less canopy cover. Although the hypothesis is tempting, habitat 
preferences of ground beetles in Chinese forests and other habitats are not as well 
studied as in the western Palearctic (Yu et al. 2009; Zou et al. 2015) and no data are 
available to test this idea.

In contrast, herb cover had a negative influence on ground beetle abundance and 
species richness. Studies from forests in both temperate and Mediterranean climate 
regions have documented both negative and positive influences of the forest herb layer 
on the species richness of ground beetles (Antvogel and Bonn 2001; Taboada et al. 
2010; Liu et al. 2016). It is known that the cover of the herb layer can impede the 
movements of ground beetles on the forest floor (Taboada et al. 2010). Thus, a denser 
understory could hinder ground beetle activity within these stands. This, in turn, could 
negatively affect hunting processes in such stands. It might also reduce estimates of 
abundance and diversity that depend on activity-based trapping as in our study which 
uses pitfall traps. Contrastingly, a greater herb cover provides protection from poten-
tial predators. Additionally, the forest understory can modify the microclimate (tem-
perature, humidity, sun-exposition), which is known to shape the ecological niches of 
many ground beetles (Thiele 1977; Bonn and Schröder 2001). Nonetheless, the influ-
ence of understory vegetation could be more complex and therefore requires further 
research with regard to ground beetles.
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Abiotic effects and ground beetle assemblages

The guild of predatory arthropods (Araneae, Chilopoda, Formicidae, cavity-nesting wasps 
and their parasitoids) in Gutianshan NP showed a significant decrease of both abundance 
and species richness with increasing elevation (Binkenstein et al. 2018). In contrast, we 
found that the biomass of the predominately predatory ground beetles studied on the 
same plots increased along the same elevational gradient. Therefore, response of organ-
isms to elevation depends not only on trophic guild (predators, herbivores, decomposers) 
in these forests (Binkenstein et al. 2018), but it can also vary within trophic guilds.

Our results for biomass indicate that beetle biomass within plots increases with 
elevation. This relationship is driven by the higher numbers of representatives of the 
genus Carabus (Fig. 4A, B), with specimens up to 42 mm in body length, the largest 
ground beetles in our study. The genus Carabus does not occur in the tropics and only 
a few species occur in the summer humid subtropics (such as in Gutianshan NP). The 
centers of species diversity are clearly in the temperate climatic zones (Breuning 1932; 
Meyer 2008). The general climate preference of Carabus species may therefore be re-
flected in our catches, where we found more individuals of these species at the cooler 
(and moister) higher elevations.

Ground beetles are able to adapt to a wide range of varying pH-values (Krogerus 
1939, 1960; Paje and Mossakowski 1984); however, our data showed significantly 
negative relationship between ground beetle abundance and increasing topsoil pH. 
Evidence from field studies suggests that different ground beetle species prefer differ-
ent pH-values in the soil (Mossakowski 1970; Matern et al. 2007). Explanations have 
been suggested only for a very limited number of species (e.g., species adapted to feed 
on snails, which prefer calcerous soils with higher pH-values: Assmann 2003). To our 
knowledge, no such studies are available for ground beetles from China. However, the 
pH-gradient we found in Gutianshan NP is relatively compressed, and also indirect 
effects, e.g., via plants, could influence ground beetle assemblages.

Low species number, abundance, and biomass of ground beetles

The overall number of ground beetle specimens, species and biomass was relatively 
low in Gutianshan NP. Given the fact, that our study took place in a subtropical hot-
spot of vascular plant diversity, we expected higher numbers of ground beetles. For 
example, studies using the same sampling approach in Central European forests have 
reported 60 times more ground beetle specimens and 90 times more ground beetle 
biomass (Homburg et al. 2019; Hülsmann et al. 2019). Similarly, the number of spe-
cies from temperate forests is higher (Nolte et al. 2017; Marrec et al. 2021). Further 
south, towards the European subtropical zone, Brandmayr et al. (1983) found similar 
low catches of both individuals and species, but in a less plant diverse forest (Mediter-
ranean forest dominated by Quercus ilex (Linnaeus, 1753)). Comparable subtropical 
forest studies in China are largely lacking, but low catch rates of ground beetles have 
also been reported from another study conducted in Gutianshan NP (Yu et al. 2017).



Carabids in a subtropical forest 919

Pitfall trap catches for carabids seem to be low in most tropical evergreen forests 
(Vennila 1999, 2000; Maveety et al. 2011; Qodri et al. 2016). In comparison to Gu-
tianshan NP, the dry tropics of Colombia host more species and greater abundance 
(Ariza et al. 2021). Many of these tropical species occur mostly in the canopy. Terry Er-
win was the pioneer of research on insect diversity of this forest stratum (Erwin 1982a, 
b, 2002), discovering many new species in the canopy of South American rainforests 
(Arndt et al. 2001; Erwin 2004a, b). However, we know from other studies that the 
ground strata can contribute to the overall biodiversity similar to that of higher strata, 
such as canopies (Stork and Grimbacher 2006).

Catches from flight interception traps

Although only a few species were recorded in our flight interception traps, they rep-
resent guilds or taxonomic entities that are well known from the tropics (Erwin and 
Erwin 1976; Erwin 1982b, 1983; Maveety et al. 2011), illustrating that the fauna of 
the subtropical Gutianshan NP is composed of temperate and tropical elements. At 
least some of these species have morphological adaptations to an arboreal life like pec-
tinate claws and adhesive setae on the lower side of the tarsi (Erwin 1979; Stork 1980). 
All species from our flight interception traps show these morphological adaptations: 
lebiine species with their ectoparasitic larval development (e.g., Lioptera erotyloides 
(Fig. 4C), which mimics erotylids in coloration, its possible hosts which also occur in 
Gutianshan NP (cf. Erwin and Erwin 1976; Hunting and Yang 2019)), the collyridine 
Tricondyla macrodera (Fig. 4D), which not only resembles ants in their habitus, but 
also regularly hunts them (Shook and Wu 2007; own observations), and the platynine 
species (cf. Whitehead and Ball 1997).

The epigeic assemblages with their few species and individuals, but also the arboreal 
fauna with its specific morphological adaptations in Gutianshan NP resembles the ground 
beetle fauna typical for tropical forests. However, further study is required to achieve a 
better understanding of patterns of ground beetle species richness in subtropical forests.
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