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In alpine habitats, contemporary species richness and diver-
sity within and among plant communities is shaped by the 
fine-scaled mosaic of microclimatic niches (Körner 2003; 
Ohler et al. 2020; Scherrer and Körner 2009), yet they are 
subject to significant alterations in response to climate 
change. Climate change in the alpine zone will most detect-
ably manifest as increased temperatures, causing reduced 
snow cover (Rumpf et al. 2022), and in altered precipita-
tion patterns (Körner 2003), both increasing the length of 
the growing season for plants or shifting the timing of phe-
nological events (Rammig et al. 2010; Inouye 2008, 2020). 
Tracking of microclimatic niches in alpine plants is mostly 
expressed as spatiotemporal variation in abundances as 
snowmelt timing fluctuates between topological microhabi-
tats within the landscape (Scherrer and Körner 2011). At the 
highest elevations, increased temperatures may give rise to 
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Abstract
There is wide consensus that climate change will seriously impact flowering plants and their pollinators. Shifts in flower-
ing phenology and insect emergence as well as changes in the functional traits involved can cause alterations in plant-pol-
linator interactions, pollination success and plant reproductive output. Effects of rising temperatures, advanced snowmelt 
and altered precipitation patterns are expected to be particularly severe in alpine habitats due to the constrained season 
and upper range margins. Yet, our understanding of the magnitude and consequences of such changes in life history events 
and functional diversity in high elevation environments is incomplete.
This special issue collects novel insights into the effects of climate change on plant-pollinator interactions in individual 
plant species and on network structure of entire plant and pollinator communities in alpine ecosystems. Using simulated 
changes of earlier snowmelt, natural gradients of variation in temperature, precipitation and snowmelt, or a long-term 
monitoring approach, these studies illustrate how plant species, plant communities, and pollinators respond to variation in 
environmental conditions associated with scenarios of ongoing climate change.
The collection of papers presented here clearly demonstrates how spatial or temporal variation in the environmental cli-
matic context affects flower abundances and plant community composition, and the consequences of these changes for 
pollinator visitation, pollination network structure, pollen transfer dynamics, or seed production. As changes in the avail-
ability of flowers, fruits, and seeds are likely to impact on other trophic levels, the time is ripe and pressing for a holistic 
multitrophic view of the effects of climate change on biotic interactions in alpine ecological communities.

Keywords Alpine environment · Biotic interaction · Environmental gradient · Pollen transfer · Pollination networks · 
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new habitats upon the melting of snowfields and glaciers, 
allowing for the new colonisation and upwards movement 
of alpine communities (Losapio et al. 2021; Walther et al. 
2005). For lower elevation snow-free mountains, in con-
trast, there might be no such newly arising habitat available 
to migrate into, prohibiting spatial niche tracking (Easter-
ling et al. 1997). Furthermore, plant species in the alpine 
zone appear vulnerable to competitive pressure from low-
land species expanding their distributional ranges (Walther 
2010). Therefore, the impact of climate change on plant 
communities is expected to intensify in alpine areas as com-
pared to lowland areas.

Plant species exhibit diverse responses to climate 
change, resulting in a restructuring of communities as 
they shift into novel configurations (Alexander et al. 2018; 
Descombes et al. 2020; Molau 1997; Walther et al. 2002; 
Walther 2010). This reshuffling of species alters interac-
tions both within and among trophic levels, which in turn 
can affect ecosystem functioning (Walther 2010; Blois et al. 
2013). For example, asynchronous range shifts among spe-
cies introduce novel community compositions though local 
extinction and colonization along latitudinal and altitudinal 
gradients (Pyke et al. 2016; Richman et al. 2020). Likewise, 

asynchronous shifts in phenological patterns among species 
have been demonstrated to impact plant community com-
position in alpine systems (CaraDonna et al. 2014; Hegland 
et al. 2009). Since plant communities, as primary produc-
ers, build the basis of trophic networks, any change in plant 
community composition can potentially impact higher tro-
phic levels such as pollinators (Arrowsmith et al. 2023; 
Forrest 2015; Forrest and Thomson 2011; Memmott et al. 
2007). Mismatches between plants and pollinators will lead 
to a decrease in pollinator visitation, pollen transfer and 
reproductive output of plant species that strongly depend on 
insect pollinators for reproduction (Kudo and Cooper 2019; 
Inouye 2020). Understanding how climate change impacts 
flowering plants, their pollinators and pollination is of para-
mount importance for conserving biodiversity and ecosys-
tem functioning.

Existing research on the impacts of climate change on 
plant-pollinator interactions in alpine environments high-
lights the sensitivity of individual interactions at the spe-
cies level, of bipartite networks at the community level, 
and it explores implications for evolutionary responses 
and ecological functioning at the ecosystem level (Fig. 1). 
These studies suggest that climate change can directly and 

Fig. 1 Summary of levels and aspects of research that require further attention in studies on the effects of climate change on plants (top row), their 
pollinators (middle row) and the methodological approaches used (bottom row)
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indirectly affect plants and pollinators, leading to modifica-
tions in the frequency and mode of interactions and poten-
tially resulting in reduced pollination and plant reproductive 
success (reviewed in Inouye 2020). In the mid 1990s, the 
first open-top chamber experiments were established, signif-
icantly advancing our experimental methodology to directly 
test the effects of climate change on plant communities by 
simulating increased temperatures (Henry et al. 2022; Henry 
and Molau 1997). Early experiments in the context of polli-
nation report changes in flowering phenology, insect visita-
tion to flowers, and their resulting seed production (Alatalo 
and Totland 1997; Henry and Molau 1997; Totland and Eide 
1999). Emerging long-term studies provide a further per-
spective of how pollinators respond to continuously chang-
ing plant community composition and subsequent changes 
in plant performance and reproductive investment (Alatalo 
et al. 2021; Klady et al. 2011; Pieper et al. 2011). About a 
decade later, snowmelt manipulation experiments allowed 
for experimental tests of the consequences of shifts in the 
growing season (Wipf and Rixen 2010) and are increasingly 
applied in a pollination ecological context (Kudo and Coo-
per 2019; Pardee et al. 2019). With advances in modelling 
approaches during the past decade, another line of research 
used species distribution models to investigate the possible 
consequences of temporal and spatial disruption of plants 
and pollinators, supporting the results of field experiments 
(Hoiss et al. 2015). Around the same time, the use of spatial 
transplants was suggested as a space-for-time substitution, 
involving targeted manipulations of single species colonisa-
tions/losses as well as shifts in entire communities (Morton 
and Rafferty 2017). While this approach has fostered some 
impactful insights into the consequences of climate-change 
induced species invasions on biotic interactions (Agrawal 
2011; Rasmann et al. 2014; Descombes et al. 2020), it has 
seldom been applied in the context of pollination (but see 
Forrest and Thomson 2011; McCabe et al. 2022; Rich-
man et al. 2020). To date, the most widely used approach 
remains the use of natural environmental gradients to study 
how communities and species interactions vary depending 
on contemporary habitat conditions, and to speculate about 
how they may respond to changes in those conditions over 
time (see references in this issue). In combination, the use 
of careful manipulation experiments and natural ecologi-
cal gradients is a powerful approach to resolve species and 
community responses to ongoing climate change (Dunne et 
al. 2003).

This special issue highlights recent findings from diverse 
geographic regions (including the Rocky Mountains, Aus-
trian and Swiss Alps, Norway, the Qinghai Tibetan Plateau, 
Southwest China, Taiwan, Japan and New Zealand) on the 
effects of climate-change on plant-pollinator interactions. 
The included studies range in focus from individual species 

to entire communities and from local to regional scales. 
Using experimental simulations, natural gradients and long-
term monitoring data, these studies jointly advance our 
current understanding of the effects of climate change on 
flowering plant communities, their co-variation with flower 
visiting insect communities, and the consequences for pol-
lination and reproductive success. Specifically, they expand 
on previous research documenting shifts in temporal and 
spatial patterns of flowering communities and insect visita-
tion by providing a more mechanistic view of why and how 
these changes happen, as well as what consequences arise 
from them. Here, we briefly summarize the key findings 
of each contribution in this issue and synthesize their joint 
impact on the field.

Phenology is a key driver of interactions between plants 
and their pollinators, determining their temporal overlap, 
and plant pollination success and reproductive output. Ris-
ing temperatures, which advance snowmelt date and change 
precipitation patterns, can cause shifts in flowering phe-
nology and insect emergence, altering plant-pollinator co-
occurrences and temporal overlaps (Forrest and Thomson 
2011; Inouye 2020). In this special issue, both Vassvik et 
al. (2024) and Rose-Pearson et al. (2024) investigated flow-
ering phenology along snowmelt gradients in alpine Nor-
way and the Rocky Mountains, respectively. Vassvik et al. 
(2024) intensively studied the small-scale spatial pattern 
of phenology among naturally variable snowmelt patches 
in the widespread herbaceous perennial Ranunculus acris, 
following up on some of the earliest and most influential 
studies in the field (Totland 1994; Totland and Eide 1999). 
In their setting, the quantity and quality of seed production 
depended on cumulative temperature and density of sur-
rounding conspecific flowers and/or frequency of insect 
visitation, indicating the importance of interactive effects 
of changes in direct abiotic and indirect biotic factors for 
responses to snowmelt timing. Interestingly, pollen supple-
mentation was particularly beneficial for reproduction under 
warmer temperatures, suggesting a shift in the limits to seed 
production from temperature to pollinators. The conse-
quences of phenological shifts on pollinator interactions is 
expected to vary among species, but how pollination system 
and pollinator specificity influence the magnitude of effects 
is so far not well understood.

In a topologically heterogenous mountain landscape, 
Rose-Person et al. (2024) experimentally altered the timing 
of snowmelt and compared the community-wide patterns 
of phenology and insect visitation in advanced and control 
plots over the entire flowering season. Within control plots, 
topography, snowmelt, flowering phenology and flower 
abundance interactively predicted pollinator visitation rates, 
but this was interrupted in an unpredictable manner under 
earlier snowmelt conditions, even though overall insect 
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elevational gradient in the Austrian Alps that functional 
diversity of both plant and pollinators decreased with 
increasing elevation, altering network properties. However, 
the consequences differed somewhat: While decreases in 
flower and pollinator functional diversity increased network 
nestedness, the decrease in pollinator functional diversity 
additionally decreased functional complementarity and 
network modularity. Their findings suggest that losses in 
plant and pollinator functional diversity will cause changes 
in pollination networks and presumably affect pollination 
services, and that such effects are stronger for losses of 
pollinator than flower functional diversity. Tu et al. (2024) 
used a scenario of glacier retreat to understand how com-
munity composition and structure change along the suc-
cessional recolonization of glacier forelands. Interestingly, 
although plant and pollinator diversity, and subsequently 
network diversity, increased from early successional stages, 
they were sharply reduced again in late successional stages, 
where few species are dominant within communities. 
Together, these two studies illustrate that altered flowering 
plant communities induce significant bottom-up changes 
in pollinator communities and rewire their interaction net-
works. Yet, how changes in pollination network structure 
affects pollination services and reproductive success is open 
for future research.

One important step forward towards understanding how 
altered pollination networks affect pollen transfer among 
species within the flowering community is made by Bi et al. 
(2024), who demonstrated that the environmental context of 
grazing pressure alters plant community composition, which 
in turn affects the structure of pollinator visitation and pollen 
transfer networks. Their study convincingly illustrates that 
flowering plants within communities are interconnected via 
complex pollen transfer networks, and further, that changes 
in the temporal or spatial occurrence of a single flowering 
species may not only affect its own pollinator interactions 
and pollination success, but also the success of other co-
flowering species. On a positive note, these indirect plant-
plant interactions were predominantly facilitative, meaning 
that plants promote each other’s pollination and reproduc-
tive success even in species-rich communities as expected 
for stressful environments (Bertness and Callaway 1994). 
Therefore, lowland species establishment following climate 
warming may not necessarily threaten alpine species by 
competing for pollinators but could instead facilitate them 
when flower resources for pollinators are not limited.

The studies collected in this special issue jointly advance 
our current understanding of how plant and pollinator com-
munities respond to changing environmental conditions 
associated with climate change scenarios (Fig. 1). Showing 
that reproductive success among established populations 
in individual species, and pollinator interactions within 

visitation did not differ between treatments. This presum-
ably is because late-flowering species disproportionally 
advanced their flowering, leading to a new composition and 
structure of the flowering community and resource avail-
ability for pollinators. Along the same lines, the study by 
Kudo et al. (2024) expanded the geographic scope of this 
topic, analysing an impressive data set including five geo-
graphic regions along a natural gradient of seasonality in 
temperature. They show that regional differences in tem-
perature seasonality affect both community-wide flower-
ing phenology and pollinator interactions. Furthermore, 
they suggest that flowering periods and their resilience to 
climatic fluctuations may be predicted from the dominant 
pollinator community, whereby fly-pollinated species with-
out seasonality seem less affected than bee-pollinated plants 
with clear seasonality. Together, all three studies converge 
on the finding that responses of plant-pollinator interactions 
to climate change may be affected by both the abiotic envi-
ronmental context and biotic factors such as co-flowering 
communities.

About two decades into major climate change research, 
long-term datasets are becoming increasingly available. 
These allow us to work with natural fluctuations in climatic 
conditions in order to identify the climatic factors respon-
sible for variation in flowering and pollinator interactions 
and to predict future responses. In this special issue, Kudo et 
al. (2024) and Fang et al. (2024) used observations of inter-
annual variation to estimate changes in plant and pollinator 
community patterns in response to temperature and precipi-
tation. While Kudo et al. (2024)’s study focussed on varia-
tion in temperature and could show that it is a key driver of 
species phenology and abundance with subsequent effects 
on pollination networks, Fang et al. (2024) found that pol-
lination networks were surprisingly stable across years. In 
their 10-year monitoring of plant-pollinator interactions in 
an alpine community in Southwestern China, higher tem-
peratures led to decreased pollinator competition resulting 
in increased network specialisation, while less precipita-
tion led to higher flower resource sharing among pollinators 
resulting in increased network nestedness. The results of 
these two studies imply that climate can directly impact pol-
lination network features, but the magnitude of such effects 
may depend on the pollination system.

Variation in species’ temporal and spatial responses to 
climatic changes induces altered community assemblage 
and consequently alters the composition and structure of 
functional flowering characters. Aguirre and Junker (2024) 
and Tu et al. (2024) both used spatial gradients to investi-
gate how decreases in species phylogenetic and functional 
diversity in plant and pollinator communities subsequently 
changes their interaction network. First, Aguirre and Junker 
(2024) found in their analysis of 24 communities along an 
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