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Abstract
Hairiness is a salient trait of insect pollinators that has been linked to thermoregu-
lation, pollen uptake and transportation, and pollination success. Despite its po-
tential importance in pollination ecology, hairiness is rarely included in pollinator 
trait analyses. This is likely due to the lack of standardized and efficient methods to 
measure hairiness. We describe a novel methodology that uses a stereomicroscope 
equipped with a live measurement module software to quantitatively measure two 
components of hairiness: hair density and hair length. We took measures of the two 
hairiness components in 109 insect pollinator species (including 52 bee species). 
We analyzed the relationship between hair density and length and between these 
two components and body size. We combined hair density and length measures to 
calculate a hairiness index and tested whether hairiness differed between major 
pollinator groups and bee genera. Body size was strongly and positively correlated 
to hair length and weakly and negatively correlated to hair density. The correlation 
between the two hairiness components was weak and negative. According to our 
hairiness index, butterflies and moths were the hairiest pollinator group, followed 
by bees, hoverflies, beetles, and other flies. Among bees, bumblebees (Bombus) and 
mason bees (Osmia) were the hairiest taxa, followed by digger bees (Anthophorinae), 
sand bees (Andrena), and sweat bees (Halictini). Our methodology provides an ef-
fective and standardized measure of the two components of hairiness (hair density 
and length), thus allowing for a meaningful interpretation of hairiness. We provide 
a detailed protocol of our methodology, which we hope will contribute to improve 
our understanding of pollination effectiveness, thermal biology, and responses to 
climate change in insects.
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1  | INTRODUC TION

Functional traits are morphological, physiological, or phenological 
characteristics measurable at the individual level, which are believed 
to influence the fitness of an organism, to be a response of the organ-
ism to environmental changes or to reflect the effect of the organism 
on ecosystem function (Violle et al., 2007). A growing number of 
studies are exploring the relationship between functional trait diver-
sity, environmental change and species composition, and emphasiz-
ing the importance of functional diversity in ecosystem processes 
(e.g., Arnan, Cerdá, Rodrigo, & Retana, 2013; Elmqvist et al., 2003; 
Hooper et al., 2005; Petchey & Gaston, 2006; Suding et al., 2008). 
Trait-based studies were mostly pioneered by plant ecologists, and 
extensive trait data bases are available for many plant taxa and com-
munities (e.g., Díaz et al., 2007; Lavorel & Garnier, 2002; McIntyre, 
Lavorel, Landsberg, & Forbes, 1999). Compared with plants, we 
know much less about animal functional diversity, especially of ter-
restrial invertebrate communities (Moretti et al., 2017; Parr et al., 
2017). This is partly caused by the lack of standardized protocols 
to measure functional traits in terrestrial invertebrates (Didham, 
Leather, & Basset, 2016; Moretti et al., 2017). Consequently, some 
important traits are often not measured or measured in ways that 
are not comparable across studies, rendering databases insufficient, 
non-uniform, or taxa-limited.

Pollinators play a key role in the functioning of terrestrial eco-
systems and provide an essential ecosystem service in terms of crop 
pollination (Klein et al., 2007). However, several studies in Europe 
and North America have shown that pollinator diversity is declin-
ing (Bartomeus & Winfree, 2013; Biesmeijer, 2006; Colla, Gadallah, 
Richardson, Wagner, & Gall, 2012; Powney et al., 2019). Within this 
context, functional traits are increasingly being incorporated in pol-
linator studies. Various studies have established links between en-
vironmental changes and species susceptibility (Murray, Kuhlmann, 
& Potts, 2009; Roulston & Goodell, 2011) and between biodiversity 
and ecosystem functioning (Fontaine, Dajoz, Meriguet, & Loreau, 
2006; Gagic et al., 2015). Commonly used functional traits in pol-
linator ecology studies include body size, mouthpart length, social-
ity, trophic specialization (lecty), voltinism, flight period, and nesting 
habits (e.g., Aguirre-Gutiérrez et al., 2016; Coutinho, Garibaldi, & 
Viana, 2018; De Palma et al., 2015; Woodcock et al., 2019).

One particularly important trait in pollinator insects is hairiness 
(pilosity). Hairiness creates an insulation layer that mitigates convec-
tive loss of heat generated by the vibration of thoracic muscles, thus 
playing an essential role in thermoregulation (Heinrich, 1993; May, 
1979). Some studies have found differences in hair length between 
bees from different climates (Peat, Darvill, Ellis, & Goulson, 2005) 
and along elevation gradients (Peters, Peisker, Steffan-Dewenter, 
& Hoiss, 2016), suggesting that hairiness could act as a response 
trait to climatic changes. Hairiness can also be considered an effect 
trait involved in pollen collection and transfer (Amador et al., 2017; 
Müller, 1995; Thorp, 2000), potentially affecting pollination effec-
tiveness (Phillips, Williams, Osborne, & Shaw, 2018; Stavert et al., 
2016; Woodcock et al., 2019).

Notwithstanding the importance of hairiness in pollinator ecol-
ogy, information on how to measure this trait is scarce and inconsis-
tent across studies (Moretti et al., 2017). As a result, hairiness data 
are mostly lacking in pollinator data bases and, when available, are 
not comparable across studies. Some studies use thorax hair length 
as a measure of hairiness (Peat et al., 2005; Peters et al., 2016). 
Others use the percentage of body surface covered by hair (Kühsel, 
2015; Phillips et al., 2018). However, these measures do not account 
for the two components of hairiness (hair length and hair density; 
Moretti et al., 2017). Other studies do consider both components, 
but use a semi-quantitative scale (Woodcock et al., 2019). Finally, 
Stavert and collaborators (2016) proposed an innovative method 
that uses a measure of entropy obtained from images of the insect's 
body surface as a proxy for hairiness. However, we could not apply 
this method to pollinators with shiny cuticles, which yielded high lev-
els of entropy due to light reflection.

The aim of our study was to develop a method to quantitatively 
measure hairiness in insect pollinators. We describe procedures to 
measure hair density and hair length and propose a simple hairiness 
index integrating both components. These procedures are then syn-
thesized in a standardized protocol. We apply this protocol to three 
different body parts of 109 insect pollinator species and show that 
our methodology discriminates pollinator groups and bee genera in 
terms of hairiness. Finally, because body size is another functional 
trait that has been related to both thermoregulation (Heinrich, 
1993; Stone & Willmer, 1989) and pollination effectiveness (Jauker, 
Speckmann, & Wolters, 2016; Kandori, 2002; Willmer & Finlayson, 
2014), we explore the relationship between hair density, hair length, 
and body size.

2  | MATERIAL S AND METHODS

2.1 | Insect specimens

We used a collection of pollinator insects from Sweden, Germany, 
and Spain composed of 109 species including Anthophila (bees; 52 
species), Syrphidae (hoverflies, 27), Bombyliidae (bee-flies, 2), other 
flies (9), Coleoptera (beetles, 9), Lepidoptera (butterflies and moths, 
5), Vespidae (wasps, 3), and Symphyta (saw-flies, 2). Bees comprised 
the following genera: Andrena (20 species), Bombus (10), Lasioglossum 
(8), Halictus (3), Osmia (5), Apis (1), Anthophora (1), Eucera (2), Xylocopa 
(1), and Nomada (1). For the analyses, Lasioglossum and Halictus spe-
cies (Halictini) were grouped together, as well as Anthophora, Eucera, 
and Xylocopa species (Anthophorinae) (Table S1). Because bees show 
marked sexual dimorphism, we only worked with females.

2.2 | Body size

We used body length as an estimator of body size (mean ± SE sam-
ple size = 5.44 ± 0.39 specimens per pollinator species). For bees, in 
addition to body length, we measured intertegular span (hereafter 
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ITS) using a stereomicroscope (mean ± SE sample size = 6.62 ± 0.68 
specimens per species). ITS is the most commonly used estimator of 
body mass in bee studies (Cane, 1987; Cariveau et al., 2016; Kendall 
et al., 2019; Osorio-Canadas et al., 2016). For this reason, we used 
ITS in the analyses involving only bees and body length in the analy-
ses involving all pollinators. ITS and body length were highly corre-
lated in bees (Spearman ρ = 0.87; p < .001).

2.3 | Hairiness

The two components of hairiness (hair density and hair length) were 
measured in three body parts: the dorsal surface of the mesothorax, the 
ventral surface of the thorax, and the face (Figure 1a-d). We selected 
these body parts because the flight muscles involved in endogenous 
heat production are located in the thorax (Heinrich, 1993) and because 
the thorax and the face act as surfaces of pollen exchange in the polli-
nation of many flower species (Willmer, 2011). We measured a mean of 
three specimens per species (mean ± SE = 2.96 ± 0.11). Measurements 
were taken with the stereomicroscope LEICA M165C equipped with 
a LAS live measurement module software (Leica Microsystems). This 
module allows taking length and surface measurements on live images 
in real units (Figure 1e,f).

2.3.1 | Hair density (number of hairs/mm2)

In each of the three above-mentioned body parts, we selected 3 rep-
resentative areas of approximately 0.1 mm2 and counted the number 
of hairs in each area. In some cases, notably in species with high hair 
density and in specimens in which hairs formed clumps due to ma-
nipulation during capture and/or preservation, it was easier to count 
hairs at their insertion points, usually signaled by a micropore on the 
cuticle (Figure 1e, see Appendix 1 for details). Counting micropores 
has the added advantage that can be applied to specimens that have 
lost hairs (e.g., due to aging; Bosch & Vicens, 2006; Southwick, 1985; 
or to poor manipulation) to obtain a measure of original hair cover.

The results of these three measurements were used to calculate 
a mean hair density for each body part. In some species, hairiness 
patterns were clearly not uniform within a body part (notably in the 
face). In these cases (11.3% of the 327 species/body parts we mea-
sured), we sampled approximately 0.1 mm2 of the area occupied by 
each hairiness pattern separately, and the overall hair density mean 
was weighted by the area occupied by each hairiness pattern.

2.3.2 | Hair length (mm)

The length of 8–9 hairs of each body part was measured using the 
length measuring tool of the software (Figure 1f). Again, in body parts 
with clearly distinct hairiness patterns, hair length of 8–9 hairs was 
measured separately for each part and the overall mean hair length 
was weighted by the surface occupied by each hairiness pattern.

The time spent measuring hairiness (hair length + hair density in 
three 0.1 mm2 areas of the three body parts) was about 15 min per 
specimen. A detailed protocol describing our method can be found 
in Appendix 1.

2.4 | Data analysis

All analyses were conducted in R v.3.3.2 (R Core Team, 2016), first 
with all pollinator species, and then with bees only.

2.4.1 | Relationships between hair density, hair 
length, and body size

For each body part separately, we tested whether hair density and 
hair length were correlated. We also tested the correlation of each of 
these two hairiness components with body size. Because hair density 
and length were only weakly correlated (see results), we calculated, for 
each body part, a hairiness index (hair density × hair length). Finally, we 
examined whether the hairiness components and the hairiness index 
of the three different body parts were correlated. We used either the 
Pearson or Spearman correlation depending on data distribution.

2.4.2 | Hairiness comparisons among pollinator 
groups and bee taxa

We calculated the coefficients of variation (SD/mean × 100) of the 
two hairiness components within and between species, separately 
for each body part. Because our method accounts for hair loss and 
since we only measured female specimens, we expected greater 
variability between than within species.

We explored whether hair density, hair length, and hairiness 
index differed between pollinator groups and bee taxa using one-way 
ANOVA and Kruskal-Wallis tests (depending on data distribution), fol-
lowed by post hoc tests for multiple comparisons (Tukey's and Dunn's 
tests, respectively). We analyzed each hairiness component of each 
body part separately. Log (X + 1) and square-root transformations 
were applied to improve normality and homoscedasticity of model re-
siduals if needed. Pollinator groups and bee taxa with three or fewer 
species (bee-flies, saw-flies, wasps, Apis, Nomada) were excluded from 
the analyses but their values are provided in the figures.

3  | RESULTS

3.1 | Hairiness components: hair density and hair 
length

Hair density of all pollinators ranged from 0 to 5,797.6 hairs/mm2 
(mean ± SE = 428.0 ± 32.3) and that of bees from 63.5 to 1,052.2 
(mean ± SE = 333.4 ± 11.6). Hair length of all pollinators ranged from 
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0.01 to 1.91 mm (mean ± SE = 0.48 ± 0.02) and that of bees from 
0.09 to 1.58 mm (mean ± SE = 0.62 ± 0.03).

Dorsal thorax hair density and length were weakly and negatively 
correlated (all pollinators: r = −.25, p < .01; bees: r = −.48; p < .001; 
Figure 2a,b). Ventral thorax and face hair density and length were 
also weakly and negatively correlated for bees (r = −.38 and −.39, 
respectively; p < .01), but not for all pollinators (p > .08).

3.2 | Relationship between hairiness 
components and body size

Dorsal thorax hair density and body size were negatively correlated, 
weakly for all pollinators (r = −.20, p < .05, Figure 2c) and moderately 
for bees (r = −.55, p < .001, Figure 2d). The analysis of ventral thorax 
and face hairiness yielded similar results (Table S2). Conversely, hair 
length and body size were positively and strongly correlated in all 
three body parts (all pollinators, r = .67–.70, p < .001, Figure 2e; bees, 
r = .89–.93, p < .001, Figure 2f).

3.3 | Hairiness comparisons among body parts

Hairiness was positively correlated across body parts (all p < .001, 
Table S3). Correlation coefficients were higher for hair length 
(all pollinators: r = .91–.95; bees: r = .96) than for hair density (all 

pollinators: ρ = 0.47–0.67; bees: r = .61–.74). The hairiness index was 
also strongly correlated across body parts (all pollinators: r = .78–
.88; bees: r = .77–.85).

3.4 | Differences in hairiness across pollinator 
groups and bee taxa

Since both hairiness components and the hairiness index were cor-
related among body parts, hereafter, we only show results of the 
dorsal region of the thorax (the analysis of the ventral region of the 
thorax and the face yielded similar results; see Tables S4 and S5; 
Figures S3 and S4).

The coefficient of variation of dorsal thorax hairiness compo-
nents was much higher between species (all pollinators: 73.0%–
76.7%; bees: 53.4%–60.7%) than within species (all pollinators: 
17.1%–18.7%; bees: 17.0%–18.3%; Table S4).

3.4.1 | All pollinators

We found clear differences among pollinator groups in the two 
hairiness components and the hairiness index (Figures 3 and 4a). 
Butterflies and moths were the group with the highest hair density, 
followed by bees, hoverflies, and beetles; other flies were the group 
with the lowest hair density (ANOVA, F4,97 = 6.9, p < .001, Figure 3a). 

F I G U R E  1   Pinned Andrena haemorrhoa 
female (a), body parts in which hairiness 
was measured (b: dorsal surface of 
the mesothorax, c: ventral surface of 
the mesothorax, d: face), and close-up 
images of the dorsal mesothorax showing 
measurements of hair density (e) and hair 
length (f)

(a)

(b)

(e) (f)

(c) (d)
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Butterflies and moths and bees had longer hair than any of the other 
pollinator groups (F4,97 = 11.3, p < .001, Figure 3c). According to 
the hairiness index, butterflies and moths were the hairiest group 
followed by bees, hoverflies, beetles, and other flies (F4,97 = 27.2, 
p < .001, Figure 3e).

3.4.2 | Bees

Our measures of hairiness also yielded clear differences among 
bee taxa (Figures 3 and 4b). Halictini had the highest hair density, 
followed by Bombus, Osmia, and Andrena, and Anthophorinae had 
the lowest density (F4,45 = 16.25, p < .001, Figure 3b). This pattern 
changed completely for hair length. Bombus and Anthophorinae had 
the longest hair followed by Osmia and Andrena, and Halictini had 
the shortest hair (F4,45 = 67.9, p < .001, Figure 3d). According to the 
hairiness index, the hairiest taxa were Bombus and Osmia, followed 
by Anthophorinae, Andrena and Halictini (F4,45 = 13.5, p < .001, 
Figure 3f).

4  | DISCUSSION

The aim of our study was to establish a standard practical procedure 
to quantitatively measure the two components of hairiness and to 
promote the use of this important trait in pollinator studies.

4.1 | Advantages of the method

The methodology we describe has several advantages. First, it pro-
vides a quantitative measure of hair density and length. Second, 
it is a non-invasive methodology; specimens remain undamaged. 
Therefore, our methodology can be applied not only to dead speci-
mens, but also to live (anesthesized) insects. Third, it can be applied 
to specimens in which the hair cover has been altered due to ma-
nipulation. Tufts of clumped hair are common in specimens that have 
been exposed to high concentrations of ethyl acetate in killing jars 
and in specimens that have been kept in water or alcohol (e.g. speci-
mens obtained from pan of malaise traps). Fourth, it accounts for 

F I G U R E  2   Scatter plots showing the 
relationship between hair density and 
hair length (a and b), between hair density 
and body size (c and d) and between hair 
length and body size (e and f); of the 
dorsal surface of the mesothorax for all 
pollinators (a, c, and e; 109 species) and 
for bees only (b, d, and f; 52 species). 
Each point corresponds to one species. 
See Table S2 for results of the ventral 
surface of the mesothorax and the face. 
DT, dorsal surface of the mesothorax; ITS, 
intertegular span
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hair loss due to aging or poor preservation. Certain pollinator groups, 
notably bee-flies, tend to lose hairs during capture and manipula-
tion. Thus, if needed, it is possible to obtain a measure of original 
hair density (as opposed to actual hair density). Fifth, measurements 
are taken directly from the specimen rather than from photographs. 
For this reason, our method is not affected by shininess, a common 
feature of the cuticle of many pollinator insects. Sixth, our method 
discriminates the two components of hairiness, thus allowing for a 
meaningful interpretation of the functional and evolutionary conse-
quences of hairiness.

Although our method may appear to be time-consuming, a 
trained person can process a specimen (8–9 measures of hair 
length + 3 measures of hair density in 3 body parts) in just 15 min. 

This amount of time can be reduced if, depending on the objectives 
of the study, fewer body parts are considered.

4.2 | Relationship between hair density, hair 
length and body size

We found a negative (albeit weak) correlation between hair length 
and density for all three measured body parts in bees and for the 
dorsal region of the thorax in all pollinators. Accounting for the two 
components of hairiness would be redundant if these two variables 
were highly correlated. Some groups such as beetles and Halictini 
had very short hair but very high hair density (Figure 3). Other 

F I G U R E  3   Mean ± SE hair density (a 
and b), hair length (c and d), and hairiness 
index (e and f) of the dorsal surface of 
the mesothorax (DT) of various pollinator 
groups and bee taxa. Different letters 
indicate significant differences among 
groups (post hoc Tukey's tests, p < .05). 
Groups with fewer than three species (in 
gray) were not included in the analyses
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groups such as butterflies and moths and bees of the genera Bombus 
and Osmia, had long hair and high hair density.

Accounting for the two components of hairiness is also import-
ant because hair length and hair density may be differently related to 
body size. A positive relationship between hair length and body size 
is expected due to allometric and mechanical constraints (movement 
would be impaired in a small animal with long hair). Previous studies 
have found a positive relationship between hair length and body size 
at the intraspecific level in bumblebees (Goulson et al., 2002; Peat 
et al., 2005). Our results show that this relationship holds at the inter-
specific level and when pollinators from different orders are consid-
ered. Positive relationships between body size and length of various 
appendages are common in insects (proboscis: Cariveau et al., 2016; 
Kunte, 2007; legs: Kaspari & Weiser, 1999; Teuscher, Brändle, Traxel, & 
Brandl, 2009 and wings: Bosch & Vicens, 2002; Bullock, 1999).

The relationship between hair density and body size, on the other 
hand, is less straightforward. We cannot think of any a priori reason why 
hair density should differ between large and small animals. We found that 
the relationship between hair density and body size was weak and neg-
ative, especially in bees. Interestingly, studies on various groups of mam-
mals have also found that small species tend to have denser (and shorter) 
fur (Sandel, 2013; Schwartz & Rosenblum, 1981; Steudel, Porter, & Sher, 
1994). We suggest that the negative relationship between hair length and 
hair density, rather than indicative of a direct trade-off, can be explained 
through the relationship between these two variables and body size. 
Given that small animals cannot have long hair due to the above-men-
tioned mechanical constraints, the evolutionary pathway to achieve high 
levels of hairiness in small animals is through increased hair density.

4.3 | Hairiness as an effect trait

Our methodology and our results have important implications for 
studies on pollination effectiveness. The ability to incorporate, 

transport, and deliver pollen is likely to be influenced by the two 
hairiness components. Longer hairs provide a greater surface for 
pollen grain adherence, and hair spacing (the inverse of hair den-
sity) may be important in relation to pollen grain size (Haider, Dorn, 
Sedivy, & Müller, 2014; Roberts & Vallespir, 1978), which shows 
great variability among plant taxa (Willmer, 2011).

A link between hairiness and pollination effectiveness has been 
found in some studies (Phillips et al., 2018; Stavert et al., 2016). 
Given the positive correlation between body size and hair length, 
studies exploring the relationship between hairiness and pollina-
tion effectiveness should account for body size, which, along with 
flower-handling behavior and visit duration, has also been shown to 
affect pollination effectiveness (Jauker et al., 2016; Kandori, 2002; 
Phillips et al., 2018; Willmer & Finlayson, 2014). Accordingly, in pol-
lination studies, hairiness measures should target the body parts 
involved in pollen transfer, which depend on flower morphology, pol-
linator body size and intra-floral foraging behavior (Araujo, Medina, 
& Gimenes, 2018; Beattie, Breedlove, & Ehrlich, 1973; Bosch, 1992; 
Solís-Montero & Vallejo-Marín, 2017).

4.4 | Hairiness as a response trait

Our methodology can also be important for studies on thermal biol-
ogy and studies exploring the geographical distribution of pollinator 
communities and populations and their response to climate change. 
Some pollinators generate heat endogenously by contracting their 
flight muscles (Heinrich, 1993), and hairiness provides an insulation 
layer around the body surface that slows convective heat loss (May, 
1979). As with pollination effectiveness, both components of hairiness 
(length and density) are likely to contribute to the creation and mainte-
nance of this insulation layer and therefore to influence thermoregula-
tion (Steudel et al., 1994; Wasserman & Nash, 1979). Consequently, we 
would expect pollinator species and populations to be hairier in colder 

F I G U R E  4   Pollinator groups (a) 
and bee taxa (b) ordered by increasing 
hairiness from left to right. (Photograph 
credits Nicolas J. Vereecken [all bees], 
Adrià Miralles [hoverflies] and Laura 
Roquer-Beni [other flies, beetles and 
lepidopterans]. All images used with 
permission.)
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climates. Again, given the correlation between hair length and body 
size, studies addressing the distribution of pollinators in relation to cli-
mate should account for body size. Body size is strongly related to the 
ability to generate heat and fly at low temperatures both at the intra- 
and interspecific levels (Bishop & Armbruster, 1999; Heinrich, 1993; 
Osorio-Canadas et al., 2016; Stone, 1993; Stone & Willmer, 1989). 
Both body size and hair length of bumblebees have been shown to be 
greater in species from colder areas along latitudinal (Peat et al., 2005) 
and elevational gradients (Peters et al., 2016). Since most endogenous 
heat is produced by the flight muscles (Heinrich, 1993), measures of 
hairiness in thermal biology studies should mainly target the thorax, 
although other body parts (head, abdomen) have also been shown to 
be involved in heat loss (Cooper, 1985; Heinrich & Buchmann, 1986; 
Roberts & Harrison, 1998).

4.5 | Hairiness in trait-based studies

Functional diversity studies typically characterize species based on 
suites of traits. Ideally, these traits should be biologically meaningful, 
easy to measure and comparable across taxa. In principle, and until 
we have a better understanding of the mechanistic effects of hair 
length and hair density of different body regions on various ecologi-
cal functions, we suggest keeping these two measures as separate 
traits in a multitrait space. Otherwise, if a single measure is desirable, 
they can be combined into a single trait (hairiness index).

4.6 | Concluding remarks

We have developed a standardized procedure to measure hairiness 
and explored the relationships between hairiness components and 
between hairiness and body size. Overall, these relationships were 
similar when analyzing only bees and when analyzing all pollina-
tors. Importantly, in addition to insect pollinators, our methodology 
can be applied to other groups of terrestrial arthropods and can 
be used to explore the relationships between hairiness and other 
ecological functions besides those discussed above. Hairiness 
has been shown to act as a physical and sensory barrier against 
predators and parasites in caterpillars (Castellanos, Barbosa, Zuria, 
Tammaru, & Christman, 2011; Lindstedt, Lindström, & Mappes, 
2008; Sugiura & Yamazaki, 2014) and moths (Shen, Neil, Robert, 
Drinkwater, & Holderied, 2018). We hope our methodology will 
foster the inclusion of this important trait in insect data bases and 
will contribute to our understanding of the importance of hairiness 
in insect ecology.
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Supporting Information section. 
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APPENDIX 1

PROTOCOL TO ME A SURE HAIRINE SS IN BEE S AND 
OTHER INSEC T POLLINATORS
This protocol follows the structure of the “Handbook of protocols 
for standardized measurement of terrestrial invertebrate functional 
traits” (Moretti et al., 2017). We focus on insect pollinators, but our 
methodology can also be applied to other groups of arthropods.

Definition and relevance
Insect hairiness (pilosity) is the collective presence of hairs, scales, 
seta or bristles growing from the cuticle (Moretti et al., 2017). 
Hairiness creates an insulation layer that mitigates the convective 
loss of heat generated by the vibration of thoracic muscles, thus 
playing an essential role in thermoregulation (Heinrich, 1993; May, 
1979). Some studies have found a negative relationship between bee 
hair length and ambient temperature (Peat, Darvill, Ellis, & Goulson, 
2005; Peters, Peisker, Steffan-Dewenter, & Hoiss, 2016), suggest-
ing that hairiness acts as a response trait to climate. Hairiness can 
also be considered an effect trait involved in pollen collection and 
transfer (Amador et al., 2017; Müller, 1995; Thorp, 2000), potentially 
affecting pollination effectiveness (Phillips, Williams, Osborne, & 
Shaw, 2018; Stavert et al., 2016; Woodcock et al., 2019). Hairiness 
may also be involved in antipredator strategies. In caterpillars and 
moths, hairs have been shown to provide mechanical and sensory 
defence against predators and parasites (Castellanos, Barbosa, Zuria, 
Tammaru, & Christman, 2011; Lindstedt, Lindström, & Mappes, 
2008; Shen, Neil, Robert, Drinkwater, & Holderied, 2018; Sugiura 
& Yamazaki, 2014).

Technical support
Measurements should be taken with a stereomicroscope with a 
magnification range of 20–80× and a camera connected to a com-
puter equipped with a software module that allows taking length 
and surface measurements directly on live images in real units. We 
used a LEICA M165C and the live measurement module from Leica 
Microsystems. Alternatively, other stereomicroscopes and software 
packages could be used (e.g., free software ImageJ). Measurements 
can also be taken from microscope pictures (instead of live images) 
but this is a more time-consuming alternative. If real units are not 
provided by the software, then the level of magnification must be 
accounted for.

Pre-treatment of the specimens
The method can only be applied to dry specimens. Apart from this, 
no special pre-treatment is necessary. The method works well even 
with specimens that have lost hair due to aging or poor manipulation, 
as well as with specimens with clumps of hair (e.g., specimens initially 
kept in alcohol that have not been properly dried). The method can 
also be applied to anesthesized live specimens.

Body parts
Hairiness is best measured in body parts with flat surfaces, but the 
method can be applied to any body part. Hairiness may strongly dif-
fer among body parts. The target body part(s) should be decided 
based on the objectives of the study. A study on pollination effec-
tiveness should target body parts directly involved with the uptake 
and transfer of pollen. A study on thermoregulation should empha-
size body parts involved in heat generation (thorax) and dissipation 
(abdomen, head, appendages).

We found hairiness to be correlated across the face, the dorsal 
surface of the thorax and the ventral surface of the thorax.

Measurement of hairiness components
Hairiness can be decomposed in hair density and hair length (Moretti 
et al., 2017).

Hair density
Counting all hairs in an entire body part is unpractical. We found that 
averaging hair counts of three areas of ca. 0.1 mm2 each provides a 
good measure of hair density for a given body part. The area sam-
pled (and if needed the area of the entire body part) can be measured 
with the appropriate tool in the software.

Counting hairs can be complicated when hair density is high and 
when hairs are long and form clumps due to manipulation during 
capture and/or preservation. In these cases, it is easier to count 
the micropores of the cuticle in which hairs are inserted (Figure 
A1). Because insect cuticles may display a large variety of micro-
sculpture patterns, including several types of punctuations, it is 
very important to spend some time to identify the correct type of 
micropores before starting the counts. Counting micropores has 
the added advantage that it provides a measure of original hairi-
ness even in specimens that have lost hair due to aging or poor 
manipulation (e.g., bee-flies typically lose a lot of hair during ma-
nipulation). In some cases, it may be practical to rub the cuticle of 
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the insect with an insect pin to detach hairs, thus facilitating mi-
cropore counts. If instead of original hairiness a measure of actual 
hairiness is desirable, then only micropores with standing hairs 
should be counted.

Sometimes hairiness patterns are distinctly non-uniform across a 
body part, notably in the face. In these cases, the area occupied by 
each hairiness pattern can be sampled separately. The percentage of 
surface occupied by each different density should be reported and the 
overall mean of hair density for that body part should be weighted by 
the area occupied by each hairiness pattern.

Hair length
The length of a hair can be measured using the length measuring 
tool of the software (Figure A2). Hair length is best measured from 
a side view. We recommend measuring 5–10 hairs in each focal 
body part.

Duration of the measurements
Following the above-mentioned recommendations, a trained person 
can measure hair density and hair length of a body part in 5 min.

Hairiness index
We found hair length and hair density to be only weakly (and nega-
tively) correlated. For this reason, we recommend reporting meas-
ures of the two components of hairiness (hair density and hair 
length) separately. However, in studies in which the two compo-
nents are suspected to have a similar effect on function, we propose 
a hairiness index combining the two hairiness components (hair den-
sity × hair length).

Body size
We found that body size was positively correlated to hair length 
and, to a lesser extent, negatively correlated to hair density. Body 
size is strongly related to heat generation and dissipation and the 
ability to fly at low temperatures (e.g., Bishop & Armbruster, 1999; 
Heinrich, 1993; Osorio-Canadas et al., 2016; Peat et al., 2005; Peters 
et al., 2016; Stone & Willmer, 1989), and may influence pollination 
effectiveness (Jauker, Speckmann, & Wolters, 2016; Kandori, 2002; 
Phillips et al., 2018; Willmer & Finlayson, 2014). For these reasons, 
we recommend accounting for body size in studies measuring hairi-
ness. Appropriate measures of body size for bees include intertegu-
lar span (interspecific level, Cane, 1987), head width and forewing 
length (intraspecific level, Bosch & Vicens, 2002). Forewing length 
and wingspan are appropriate measures for butterflies (Beck & 
Kitching, 2007; García-Barros, 2000, 2015; Miller, 1991; Nylin, 
Wiklund, Wickman, & Garcia-Barros, 1993). When comparing spe-
cies from different insect orders, body length is probably the most 
suitable measure.

Other considerations
We found that measuring three specimens per species allowed us 
to discriminate between pollinator groups and bee genera. Sample 
sizes should be increased in studies addressing intra-specific 
variability.

Because many pollinator species (notably bees) show marked sex-
ual dimorphism, males and females should be measured separately.

Measures of hairiness on the thorax dorsal region and body size 
of 109 pollinator species from Spain, Germany and Sweden are pro-
vided in Table S1.

F I G U R E  A 1   Hair micropores in 
the dorsal thorax region of Scaeva 
albomaculata (left) and of Andrena 
haemorrhoa (right)

F I G U R E  A 2   Measurement of hair length on the dorsal thorax 
region of Xylocopa violacea


