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Habitat disturbance can have negative impacts on biodiversity, such as reducing species richness. The effects 
of habitat disturbances on parasite infections of host species, potentially altering their survival rate and thus 
abundance, are less well known. We examined the influence of forest logging in combination with seasonality, 
host abundance, host body condition, and host sex, on the community composition of gastrointestinal parasites 
infecting Edward’s swamp rat, Malacomys edwardsi. Community composition of parasites did not differ between 
logged and undisturbed sites, but the abundance of some nematodes (i.e., Ascaris and hookworm) was higher in 
undisturbed than logged sites. The higher abundance of these nematode species implies a changed host-parasite 
relationship, thus potentially influencing host persistence.
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Habitat disturbances have the potential to change the abundance 
and distribution of wildlife. Changes in abundance in particular 
are the result of an alteration in the reproductive success and 
the survival of individuals (Safina and Burger 1983; Gill et al. 
1996; French et  al. 2011). One proxy to estimate how likely 
individuals are to survive and reproduce is the degree to which 
individuals are infected with parasites. Individuals are infected 
by a diversity of endoparasites in the gastrointestinal system, 
infections that can result in any one of many pathological ef-
fects, with some impacts being subclinical and others more evi-
dent (Holmes 1987; Gunn and Irvine 2003; Cripps et al. 2014). 
For example, hookworm infections can cause anemia, retard 
growth, and result in tissue damage and eventual mortality of 
their hosts (Seguel and Gottdenker 2017).

Parasite communities are structured by a combination of 
different processes such as dispersal events and ecological 
selection. Dispersal events describe how parasite species col-
onize and reach the host among and within habitat patches 
(Guégan et  al. 2005) while ecological selection refers to bi-
otic and abiotic filter factors that determine which parasites 

persist in a habitat; i.e., host traits, interactions among parasite 
species, and habitat disturbance (Belyea and Lancaster 1999; 
Vellend 2010; Chase and Myers 2011). Host traits such as sex 
(i.e., hormonal and behavioral differences) and body condition 
also influence host susceptibility to parasite infection (Brunner 
et al. 2014; Luguterah and Lawer 2015; Oliver-Guimerá et al. 
2017; Kołodziej-Sobocińska et  al. 2018; Segura et  al. 2019) 
and are linked to the immune system (Zuk and McKean 1996; 
Abolins et al. 2018). Interactions among multiple parasite spe-
cies within a host can lead to trait-based competitive exclusion 
or facilitation of parasites (Graham 2008; Rynkiewicz et  al. 
2015). Furthermore, parasite species may not occur in a hab-
itat because they are incompatible with abiotic factors (e.g., 
temperature, humidity) that were altered by anthropogenic 
activities (Kelley 1980; Lafferty and Kuris 1999; Friedman 
and Lawrence 2002). Thus, ecological selection and dispersal 
jointly can drive the abundance and diversity of parasites.

In tropical forests across the world, anthropogenic activ-
ities such as logging and agriculture occur at alarming rates 
(Benhin 2006). In Africa, exploitation of forests is expected 
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to increase with human population growth (Guariguata et  al. 
2010; Suleiman et al. 2017). In Ghana for instance, agriculture, 
logging, and mining present challenges for forest protection 
and management efforts (Schueler et  al. 2011; Acheampong 
et al. 2019; Tsai et al. 2019). In particular, chainsaw milling is 
widespread in tropical forests, is often carried out illegally, and 
entails the selective removal of trees and their onsite conversion 
to lumber (Wit and van Dam 2010). The practice has gained 
popularity due to its low operational and investment costs. 
Although this activity sometimes is legal in many tropical de-
veloping countries (Marfo 2010; Kishor and Lescuyer 2012), 
it is not adequately regulated and could disrupt host-parasite 
interactions by altering the exposure of hosts to parasites by the 
processes of ecological selection and dispersal events.

There is evidence that anthropogenic activities have negative 
effects on forests and increase parasite or disease transmission, 
particularly in zoonotic infections in villages and towns on the 
periphery of forests (Gillespie et al. 2005; Wright et al. 2009; 
Wilkinson et al. 2018; Brock et al. 2019; Olivero et al. 2019). 
However, little is known about regular small-scale impacts, 
such as the effects of chainsaw milling on parasitism patterns in 
small mammal populations; we therefore address the following 
questions by evaluating endoparasites in Edward’s swamp rat, 
Malacomys edwardsi. First: how does logging in the form of 
chainsaw milling influence the community composition of gas-
trointestinal parasites and hence the co-occurrence of parasites 
in hosts? Second: what determines the rate of parasite infection 
of individual swamp rats? Here, we hypothesized that differ-
ences in habitat disturbance (logged vs. undisturbed), season 
(dry vs. wet), and host abundance and traits (sex, body condi-
tion) will result in differences in parasite abundance.

Materials and Methods
Study area and sites.—The study was undertaken in Atewa, 

an upland evergreen forest located within the high forest zone 
of Ghana (highest peak is 842 masl; Hall and Swaine 1981) 
that is comprised of two forest blocks: the Atewa Range (237 
km2) and the Atewa Range Extension (21.3 km2). Our study 
occurred in the larger forest block, the Atewa Range Forest 
Reserve (Fig. 1). The forest has a bimodal rainfall pattern an-
nually with an average annual precipitation of about 1,650 mm. 
Major and minor wet seasons occur from May to July and 
September to October/November respectively. Lower temper-
atures and higher rainfall often are recorded in the wet than in 
the dry season (Supplementary Data SD1). The forest is bio-
logically diverse in flora and fauna with several rare and en-
demic species, such as the Atewa dotted butterfly (Mylothris 
atewa), the ursine colobus monkey (Colobus vellerosus), and 
the large-headed shrew (Crocidura grandiceps; McCullough 
et al. 2007). Large parts of the forest are intact, but chainsaw 
milling, hunting, and agriculture nevertheless occur. Besides its 
rich biodiversity, portions of the reserve have significant gold 
and bauxite deposits, drawing the interests of international 
mining companies as well as illegal artisanal and small-scale 
miners (Kusimi 2015).

We collected data in five logged (chainsaw milled-CM) and 
five undisturbed (UF) sites within the Atewa Range Forest 
Reserve in the wet (1 July—5 August) season and increased 
it to 12 (6 CM, 6 UF) in the dry season (8 November—19 
December) of 2018. These sites were spread across the three lo-
cations (i.e., towns) of Asiakwa, Kibi Apapam, and Segyimase. 
Sites were chosen based on the absence or presence of logging 
disturbance within the forest. Investigated chainsaw-milled 
sites had logging intensities of two to seven trees of various 
diameters at breast height per site (~1 ha) and the lumber was 
transported out of the forest without using machinery. Canopy 
cover was higher in undisturbed than in logged sites (% x̄ ± SE; 
CM = 48.2 ± 9.7, UF = 93.3 ± 1.3).

Live-trapping and quantification of fecal parasites.—A total 
of 25 Sherman traps (7.62 cm × 8.89 cm × 22.86 cm) arranged 
in a 5 × 5 array and separated by a distance of 10 m were placed 
at each site. Traps at each site were active for three consecutive 
nights per sampling session with arrays left unchanged during 
sessions (i.e., seasons). All traps were placed at ground level, 
preferably at places that provided cover for small mammals 
(e.g., downed wood and rocks). Traps were baited with peanut 
butter mixed with oat, corn, and dried fish. Baited traps were 
set before sunset on the first day. They then were left opened 
for the duration of each trapping session per site and checked 
daily between 6 a.m. to 9 a.m. for captures. The survey yielded 
a sampling effort of 1,650 trap nights. Trapping and handling 
of animals conformed with the guidelines of the American 
Society of Mammalogists (Sikes et al. 2016). Animals captured 
for the first time were marked using ear tags with unique codes 
to allow for identification of recaptures (National Band and Tag 
Company, Newport, Kentucky). Individuals were identified to 
species level using identification guides (Grubb et  al. 1998; 
Kingdon et  al. 2013; Monadjem et  al. 2015), sex was deter-
mined, and measurements taken (weight, head and body length, 
and hind foot length). Traps were inspected for scat samples 
which were immediately preserved in formol ether.

To examine gastrointestinal parasite abundance, we used the 
formol-ether sedimentation method to concentrate scat para-
sites (Uga et al. 2010) which then were stained on a microscopic 
slide and observed under 100× and 400× magnification with a 
compound light microscope for the identification of parasites 
using morphological keys (Ash et al. 1994). The detection and 
identification of parasites were based on egg, cyst, and larvae 
morphology (Supplementary Data SD2). The number of each 
parasite species was counted to obtain their respective abun-
dances per scat sample (i.e., host individual).

While we trapped a total of six small mammal spe-
cies (Supplementary Data SD2) we used the swamp rat 
M. edwardsi as study organism because it was found to be the 
most abundant species in the study area (Lawer et al. 2021). 
This small mammal species lives in primary forests but also 
can inhabit disturbed or secondary forest sites (Happold 
2013). The genus Malacomys is known to be commonly in-
fected by nematodes and mites among other parasites (Pearse 
1929; Sakka and Durette-Desset 1988; Bochkov and Fain 
1997; Bain and Junker 2013).
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Co-occurrence and community composition analyses.—All 
statistical analyses were undertaken in the program R (R Core 
Team 2020). To identify the co-occurrence patterns in parasite 
communities, i.e., whether two parasites frequently occurred 
together or avoided each other, pairwise ecological relation-
ships among gastrointestinal parasites were quantified using 
the probabilistic model of species co-occurrence on presence-
absence data implemented in the cooccur package (Veech 
2013; Griffith et al. 2016). The model calculates the observed 
and expected frequencies of co-occurrence between each pair 
of species. The expected frequency is based on a random dis-
tribution of each species, independent of the other species. 
Probabilities returned from the analysis indicate that two spe-
cies would co-occur more or less frequently than observed at 
an alpha threshold of 0.05: species pairs then are classified as 
having positive (species co-occur significantly more frequently 

than expected), negative (species co-occur significantly less 
frequently than expected) or random (observed frequency of 
co-occurrence does not significantly differ from expected) 
associations.

To analyze differences in the community composition, we 
visualized the Bray–Curtis dissimilarity in parasite communi-
ties with non-metric multidimensional scaling (NMDS) using 
the vegan package’s function metaMDS (Oksanen et al. 2019). 
Effects of forest disturbance and season on the parasite com-
munities were analyzed using permutational multivariate anal-
ysis of variance while controlling for site-level variation based 
on location of site (PERMANOVA, vegan package, function 
adonis).

Parasite count analysis.—One of the predictors included 
in the model to describe parasite abundance was the scaled 
mass index (SMI), i.e., a measure of the hosts’ body condition 

Fig. 1.—Map of the study area: (A) Africa, (B) Ghana, and (C) Atewa forest reserve showing sampled sites for small mammals from July to 
December 2018. The dotted line in C shows the Atewa mountain range while the solid line represents the forest reserve. Undisturbed sites are 
denoted by filled squares while logged (i.e., chainsaw milled) sites are represented by filled crosses.
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(Peig and Green 2009). This approach takes into account the 
scaling relationship between body mass and a distinct linear 
body measurement according to the equation: SMI = M

i
(L0/Li

)
bSMA, where M

i
 and L

i
 are the respective body mass and size 

of the ith host individual; L0 is a predefined value of body size 
(taken as the arithmetic mean of body length in this study); and 
bSMA is the scaling exponent calculated by standardized major 
axis regression. We used the bSMA coefficient estimated for 
undisturbed (reference) sites to calculate the SMI for the en-
tire data, as suggested by Peig and Green (2010). The “smatr” 
package was used for the estimation of the bSMA coefficient 
(Warton et al. 2012).

Parasite count data as a proxy for the infection rate of 
small mammals were analyzed using generalized models. 
We used generalized linear mixed models (GLMM), hurdle 
models, and generalized additive mixed models (GAMM) in 
packages glmmTMB (Brooks et  al. 2017) and mgcv (Wood 
2017). Depending on the best model fit identified based on the 
Akaike information criteria (AIC; bbmle package, function 
AICtab; Bolker and Team 2017), Poisson, negative binomial, 
or zero inflated models for count data were selected. Models 
with an additive effect were included because body condition 
and parasite abundance do not always follow a linear (nega-
tive) relationship (Maceda-Veiga et al. 2016). Response vari-
ables in the models were abundance of total parasites, Ascaris, 
Strongyloides, and hookworm (includes multiple genera: e.g., 
Necator and Ancylostoma), with the following fixed predictor 
variables: disturbance (logged vs. undisturbed), season (dry 
vs. wet), sex, SMI (condition), and small mammal abun-
dance. We used small mammal abundance per site as a proxy 
for population size of host. Location of sampling sites was 

considered as a random variable in all tentative models. 
GAMM was selected for total, Ascaris, and hookworm, while 
GLMM was chosen for Strongyloides parasite count analyses 
(Supplementary Data SD3).

To verify model validity and check whether co-linear pre-
dictors would cause harm, we carried out two tests. The vari-
ance inflation factor (VIF; for GAMMs, mgcv.helper was used; 
Clifford 2019) was calculated and explanatory variables with 
VIFs greater than 5 subsequently were excluded from models 
(Supplementary Data SD3). VIF values <5 in final models in-
dicated an absence of multicollinearity (Kutner 2005). In ad-
dition, residual diagnostics of models using the DHARMA 
package (Hartig 2019) suggested that selected models were ad-
equate and fit the data well (Supplementary Data SD4).

Low sample size may lead to a weak statistical power. 
We approximated the power of our mixed model analysis by 
estimating the power of a corresponding generalized linear 
mixed model with Poisson distribution (R package “simr”; 
Green and MacLeod 2016).

Results
Nineteen of 32 trapped rats were infected by gastrointestinal 
parasites. Parasites belonged to 12 taxonomic groups (spe-
cies of helminths and protozoans; CM = 6, UF = 11; Fig. 2).  
Ascaris species were the most abundant parasite group, 
infecting about 38% of hosts (12/32). The next most dominant 
parasite groups were species of hookworms and Strongyloides, 
infecting approximately 25% of all hosts (8/32). Two proto-
zoans, Trichuris trichuira and Giardia sp., were found only 
in undisturbed sites, but with low infestation (abundance) and 

Fig. 2.—Mean (±SE) parasite taxonomic abundance per host individual (Edward’s swamp rat, n = 32) in logged and undisturbed sites in Atewa 
range forest reserve, July to December 2018.
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prevalence (<7%; Fig. 2). Prevalence of parasites did not differ 
by habitat disturbance (P = 0.427), season (P = 0.721), and sex 
(P = 0.070), based on the results of a Fisher’s exact test.

Parasite species co-occurrence and community composi-
tion.—We pooled all data for the co-occurrence analysis. Our 
probabilistic analyses of parasite species co-occurrence re-
vealed instances of only positive and random species associ-
ations (no negative associations; Fig. 3). Approximately 8% 
of species pair associations were positive (nonrandom) while 
the remaining 92% were random: hookworms in particular ac-
counted for more of the positive associations (more frequent 
in combination with nematode species). This indicates that the 
species composition of parasite communities predominantly 
followed random patterns of community assembly.

In addition, non-metric multidimensional scaling plots re-
vealed lack of clustering of parasites by disturbance and season 
(Fig. 4). Permutational multivariate analyses of variance con-
firmed that both disturbance (d.f. = 1, F = 0.115, P = 0.996) and 
season (d.f. = 1, F = 0.937, P = 0.545) had no significant effects 
on gastrointestinal parasite composition.

Disturbance, season, and host traits as predictors of para-
site abundance.—Disturbance, season, and host characteristics 

significantly influenced Ascaris and hookworm abundances, 
except for total abundances of parasite and Strongyloides  
(Table 1). In particular, we found that female swamp rats on 
average had significantly higher Ascaris and hookworm abun-
dance than males (Fig. 5). Hosts inhabiting undisturbed sites 
had higher parasite abundances than logged sites. In terms of 
seasonality, Ascaris and hookworm infections were respec-
tively high in the wet and dry seasons (Fig. 5). Small mammal 
abundance used as a proxy for population size was positively 
correlated with abundance of Ascaris (Supplementary Data 
SD5). We found a significant non-linear effect of body con-
dition on Ascaris abundance (Table 1, Ascaris model): i.e., 
Ascaris abundance likely peaks at intermediate body condi-
tion (Supplementary Data SD5). We observed a different trend 
(linear) for hookworms however, where hosts with lower body 
conditions were less infected than hosts with higher body con-
ditions (Supplementary Data SD5). The estimated power for 
the model parameters based on our sample size of 32 appeared 
to be sufficient in most cases. Only the disturbance parameter 
in the model for Strongyloides had a low power (8%); all other 
parameters in the fitted models had sufficient power, ranging 
from 35% to 95% (Supplementary Data SD4).

Fig. 3.—Pairwise co-occurrence patterns between gastrointestinal parasites infecting Edward’s swamp rat in Atewa range forest reserve, July to 
December 2018.
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Discussion
Parasite communities vary across space and time, and among 
populations (Gotelli and Rohde 2002). The similarity in para-
site community composition between logged and undisturbed 
sites likely is due to the relatively low disturbance levels as-
sociated with logged sites (i.e., despite differences in parasite 
occurrence and abundance; Lawer et al. 2021). Indeed, when 
pooling data, our results suggest that parasite communities 
were shaped by predominantly random patterns of species 
co-occurrence. This can be attributed to the lack of interspecific 
interactions among parasite groups, a pattern that similarly was 
observed in fishes (Gotelli and Rohde 2002), another mammal 

species (Fellis et al. 2003), and arthropods (Adair et al. 2018). 
Alternatively, the composition of parasites in the host could re-
flect random encounters with infectious parasite stages in the 
environment.

Abundances of Ascaris and hookworms (but not 
Strongyloides) were significantly lower in logged compared 
to undisturbed sites, suggesting that different parasite groups 
respond differently to varying levels of habitat disturbance 
(Wolinska and King 2009; Carbayo et  al. 2019). Similarly, 
seasonal variation in parasite abundance has been reported for 
other groups of hosts including small mammals (Wiger 1979; 
Raharivololona and Ganzhorn 2010; Viljoen et al. 2011; Archer 
et  al. 2017). Climate and weather affect parasites differently 

Table 1.—Results of model comparison predicting parasite abundances in Malacomys edwardsi starting with a full model including all pre-
dictors: disturbance (logged vs. undisturbed), season (dry vs. wet), and host traits (sex, small mammal abundance-TSMA, and scaled mass index-
SMI) with location set as a random variable. Rows with an “a” superscript indicate that a smooth (thin-plate regression spline) was applied to the 
predictor variable of that specific model and its respective degrees of freedom (d.f.) are actually the estimated degrees of freedom (e.d.f.). Final/
reduced model outputs are presented in Fig. 5 and Supplementary Data SD5 (or see Supplementary Data SD6 for parameter estimates). Results 
are based on a sampling period from July to December 2018 in the Atewa range forest reserve.

Variable Total parasites Ascaris Strongyloides Hookworms

d.f. χ 2 P d.f. χ 2 P d.f. χ 2 P d.f. χ 2 P

Disturbance 1 0.029 0.866 1 11.46 0.0007 1 0.020 0.90 1 38.929 <0.0001
Season 1 0.282 0.595 1 11.69 0.0006 1 0.330 0.57 1 42.111 <0.0001
Sex 1 1.023 0.312 1 29.88 <0.0001 1 0.840 0.36 1 47.146 <0.0001
TSMA 1 0.100 0.752 1 40.330 <0.0001 1 0.300 0.58 1 0.788 0.375
SMI 1.036a 0.202a 0.7012a 7.564a 304.208a <0.0001a 1 0.310 0.58 1a 329.610a <0.0001a

Fig.  4.—Non-metric multidimensional scaling plot of parasite composition based on Bray–Curtis dissimilarity on abundance data (k  =  3, 
stress = 0.062) from Atewa range forest reserve survey (July to December 2018). There are no logged sites for the wet season in the figure, be-
cause host individuals (Edward’s swamp rat) sampled in the logged sites during the wet season had no gastrointestinal parasite infections.
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due to their varying life histories and optimum meteorological 
requirements (temperature, humidity/rainfall). For instance, 
the infective L3 stage of bursate nematodes (order Strongylida: 
hookworms) migrate onto vegetation and are more directly im-
pacted by meteorological factors such as erratic rainfall than 
their earlier life stages (eggs and L1 and L2 stages still live in 
the feces; Levine 1980). Unlike bursate nematodes, the eggs 
of Ascaris species (order Ascaridida) can remain alive and in-
fective for long periods under varying stress levels (≤5 years 
under field and laboratory conditions; Brown 1928). This may 
have accounted for the decreased hookworm abundance in the 
wet season, while Ascaris were more abundant. We also do not 
rule out the effect of parasite biology (life cycle) in the patterns 
observed for Strongyloides. For example, the autoinfection 
ability of S. stercoralis (Viney and Lok 2007) could have ac-
counted for the observed patterns due to multiple reinfections 
within hosts. Also, free-living infective filariform (L3 stage) 
larvae of S. ratti (a parasite of rats) are long lived and can per-
sist in an environment until a suitable host is found (Viney and 
Lok 2007). Although we did not distinguish between species 
of Strongyloides in our analyses, and given the life cycle of 
rhabditid nematodes which alternate between free-living and 
parasitic forms, further research is required to assess the gener-
ality of the observed patterns across other host taxa.

Host ecology and traits including population size, sex, 
and body condition can affect parasite infection intensities. 
Population size of swamp rats affected Ascaris abundance, sug-
gesting that abundant populations of small mammals increase 
encounter rates and contact with fecal matter, thus enhancing 
parasite transmission (Anderson and May 1979; Stenkewitz 

et al. 2016; Sugiura et al. 2018). In our study, female swamp 
rats were more infected than males both by Ascaris and hook-
worms. Although this finding is not surprising (Lloyd 1983; 
Sanchez et al. 2011), countless studies have reported contrary 
results (Oliver-Guimerá et al. 2017; Segura et al. 2019). In ro-
dents for example, an absence of sex-biased parasitism (Čabrilo 
et al. 2018) and the presence of female- and male-biased para-
sitism (Krasnov et al. 2005) have been recorded, suggesting a 
complex phenomenon mediated by several mechanisms (e.g., 
physiology, behavior). Host species variation in trade-offs be-
tween sexually selected traits and immune function could be an 
explanation for differences in sex-biased parasitism (Sheldon 
and Verhulst 1996; Hosken and O’Shea 2001; Hillegass et al. 
2008). Likewise, body condition can have a significant ef-
fect on parasite abundance. Exploratory tests revealed non-
significant differences in body condition related to logging, 
season, and sex (Supplementary Data SD5). If body condition 
is tightly linked with immune defense (Abolins et al. 2018), and 
body condition does not vary based on disturbance, season, and 
sex, then it is likely that total parasite abundance will not vary 
for these variables due to similarity in immunity. For instance, 
Winternitz et  al. (2012) found no relationship between host 
condition and parasites. However, species co-occurrence pat-
terns especially among nematodes could have accounted for the 
relationships in the two taxonomic groups due to facilitation 
(Graham 2008)—i.e., linear relationship for hookworm and 
non-linear relationship for Ascaris (Supplementary Data SD5). 
We found that nematode species co-occurred more frequently 
than expected. Positive species associations may arise through 
mutualistic interactions between phylogenetically distant taxa 

Fig. 5.—Response of parasite abundance to predictor variables based on final models (as in Supplementary Data SD6): shown only for significant 
categorical variables, namely, Sex (ref = Female), Season (ref = Dry) and Disturbance (ref = logged). Results are based on parasite data collected 
on Edward’s swamp rat from Atewa range forest reserve, July to December 2018.
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(Zelezniak et al. 2015; Rakoff-Nahoum et al. 2016), or when 
one species facilitates the other via host immunosuppression 
by the first arriving parasite (Lello et al. 2004; Graham 2008). 
Notably, our findings highlight that linear negative relation-
ships between parasite abundance and body condition are not 
universal (Maceda-Veiga et al. 2016).

Another factor that may explain the observed patterns in 
parasite abundance and community composition is patch con-
nectivity (Altermatt and Holyoak 2012; Spiesman et al. 2018; 
Santos et  al. 2019). Timber exploitation by chainsaw milling 
is widespread in the reserve (Asamoah et  al. 2011), creating 
patches of undisturbed forest with animals moving among 
patches. Random encounters between hosts and parasites there-
fore may be another factor driving the parasite community com-
position within the forest (because patches are not isolated). 
Since infection intensity was high in undisturbed sites (and 
small mammal abundance was relatively high in undisturbed 
forests; Lawer et al. 2021), hosts may have been releasing large 
numbers of parasite eggs in feces into the environment. This 
could have increased the likelihood of contact with infected 
fecal matter by hosts, leading to more infections in undisturbed 
sites. Alternatively, the decline in infections in logged sites may 
be due to a disruption in the life cycle or development of some 
parasite species outside the host in disturbed habitats (Gardner 
and Campbell 1992; Cardoso et  al. 2016; Boundenga et  al. 
2018; Galbreath et al. 2019).

For both logged and undisturbed sites, parasite communi-
ties were shaped predominantly by random patterns of species 
co-occurrence. Contrary to expectations, some taxon-specific 
group abundances were significantly lower in logged compared 
to undisturbed sites. We acknowledge the potential limitation 
posed by our small sample sizes and the likely impact this 
could have on parameter estimates. Power analysis of corre-
sponding GLMMs suggested a sufficiently large sample size 
to run our models (Supplementary Data SD4), but we never-
theless advise for future studies to increase the sample sizes to 
verify our findings. That stated, our results suggest the possible 
effect of logging on host-parasite relationships for at least some 
parasites of the swamp rat.
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