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Abstract. Ecological intensification has been embraced with great interest by the academic sector but is still
rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward.
Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help
promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has
traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat
preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables
with real observations. Here, we test these two approaches to predict pollination supply and validate these predic-
tions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one
of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select
from among a comprehensive set of state-of-the-art machine-learning models. Moreover, we explore a mixed
approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that,
at a global scale, machine-learning models work best, offering a rank correlation coefficient between predic-
tions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately
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well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean
forests show a better agreement between mechanistic model predictions and observations, probably due to more
comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes.
This study highlights the challenges of transferring input variables across multiple biomes, as expected given
the different composition of species in different biomes. Our results provide clear guidance on which pollination
supply models perform best at different spatial scales – the first step towards bridging the stakeholder–academia
gap in modelling ecosystem service delivery under ecological intensification.

1 Introduction

Agricultural intensification enabled a dramatic increase in
agricultural production during the second half of the 20th
century, with a growth rate even exceeding the population
growth rate (Wik et al., 2008). However, the last 2 decades
have witnessed a saturation in the yield of major crops in
some countries (Grassini et al., 2013). Given expected pop-
ulation growth and associated increases in the demand for
agricultural products, the pressure to expand agricultural ar-
eas will increase in many regions (Foley et al., 2011). Short-
term food production can be increased to a certain extent if
such expansion occurs and conventional agricultural inten-
sification practices are applied to currently underperforming
lands. Nonetheless, in the long run, these land-use practices
come at the cost of massive environmental damage, under-
mining the capacity of ecosystems to sustain food production
and other ecosystem services (Foley, 2005), which would
make agricultural intensification ineffective, if not detrimen-
tal.

One way to reduce the environmental impact of conven-
tional agricultural intensification while keeping productivity
near optimal values is to use ecological intensification (Bom-
marco et al., 2013), which relies on nature-based solutions to
enhance crop productivity. These ecological-intensification
practices can potentially avoid much of the environmen-
tal damage associated with the future increase in food de-
mand (or even, in the best-case scenario, drive the recovery
of already-damaged ecosystems). As such, the ecological-
intensification approach has attracted the scientific commu-
nity’s attention, and the scientific community, in turn, has
provided evidence of its potentiality (Cassman et al., 2010;
Bommarco et al., 2013; Kovács-Hostyánszki et al., 2017).

Pollination services are a paradigmatic example that illus-
trate the ability of ecological intensification to enhance crop
yield because the yield of more than 70 % of the crops grown
worldwide depends, to some extent, on animal pollination
(Klein et al., 2007). Furthermore, pollination contributes to
around 10 % of the global value of agriculture (Lautenbach
et al., 2012). During the last few decades, the proportion of
cropland devoted to pollinator-dependent crops has been in-
creasing (Aizen et al., 2008). However, common practices
of conventional intensification (e.g. high input of pesticides
and fertilizers, landscape simplification, limited crop rota-

tion) are harmful to pollinators (Le Féon et al., 2010; Aizen
et al., 2019) and therefore counter-productive for pollinator-
dependent crops. Climate change may exacerbate the prob-
lem, shifting the location of pollinator-dependent crops from
areas with high pollinator availability to less suitable land-
scapes (Polce et al., 2014). To address the shortage of wild
pollinators, some farmers locate honeybee colonies near their
fields, but the service provided by honeybees alone is of-
ten lower than when wild pollinators are also present (Klein
et al., 2003; Greenleaf and Kremen, 2006; Garibaldi et al.,
2013; Kennedy et al., 2013). Thus, enhancing wild pollinator
populations opens up the possibility of a win–win situation
where ecological intensification leads to higher yield while
enhancing ecosystem functioning and biodiversity (Garibaldi
et al., 2016; Dainese et al., 2019; Woodcock et al., 2019). Yet,
as opposed to the use of managed honeybees and other inputs
which can be easily tracked by farmers, understanding the
availability of wild pollinators and the pollination services
they can provide is complex. One effective way to facilitate
bringing this knowledge to the interested stakeholders is by
using modelling approaches (Polce et al., 2013).

Pollination service models can compute metrics like pol-
linator visitation rates or other proxies for pollinator bene-
fits within a particular geographic area to improve pollination
management. The visitation rate of wild species is positively
correlated to pollination services like fruit set and pollen de-
position (Garibaldi et al., 2013; Rader et al., 2015; Dainese
et al., 2019). Farmers can use predictions to optimize pollina-
tion services in the fields, and policy-makers can develop ef-
fective agri-environmental schemes or promote governmen-
tal initiatives for conservation such as the EU Pollinators
Initiative (Zulian et al., 2013; European Commission Joint
Research Centre, 2018) or the US Pollinator Research Ac-
tion Plan (The White House, 2015). The importance of de-
scribing landscape suitability for pollinators is clear from an
economic and ecological perspective. Whereas there is a cer-
tain consensus on some general statements, for example, the
availability of natural and semi-natural habitats are benefi-
cial for most pollinators (Garibaldi et al., 2011; Klein et al.,
2012), there is an incomplete understanding of the habitat
conditions and mechanisms that allow for the presence of
particular species at particular locations (Jha and Kremen,
2012; Rogers et al., 2014; Leong et al., 2014; Dicks et al.,
2015).
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Several modelling approaches have been used in the past
to predict pollinator abundances. On the one hand, mechanis-
tic or process-based (Lonsdorf et al., 2009; Olsson and Bolin,
2014; Häussler et al., 2017; Everaars et al., 2018) and agent-
based (Becher et al., 2014, 2018) models describe, with vary-
ing degrees of complexity, mechanisms that characterize the
behaviour of pollinators. The final output of these models is
always a consequence of the mechanisms that guide individ-
ual pollinator behaviours. As such, they can provide detailed
output on ecological processes, such as pollinator nesting or
foraging preferences, which aids the interpretability of re-
sults. However, these models require considerable ecologi-
cal knowledge as input, which may be inaccurate and biased
(Gardner et al., 2020).

An alternative is to use data-informed ecological inputs
(Gardner et al., 2020) or purely data-driven models like
species distribution models (Polce et al., 2013, 2018) and
machine-learning approaches (Kammerer et al., 2021). Data-
driven models to predict species distributions form the basis
of these data-driven models used to infer the relationships be-
tween environmental conditions and the target variable (typ-
ically occurrence), enabling the computation of predictions
at unobserved locations. As opposed to mechanistic models,
data-driven models depend on a training process, which im-
plies that they typically require a large number of data and
that predictions can only be made using the same variables
(with the same pre-processing) as the ones used in the train-
ing. Moreover, the target variable depends directly on the
dataset used. Statistical methods usually rely on a mixture
of systematic surveys and citizens’ observations that are not
specifically attached to crop fields, which means that they
predict occurrence rather than the crop visitation rate. Fi-
nally, despite theoretical knowledge of biological processes
being important for the development of data-driven models
(e.g. for the selection of variables), they ultimately depend
on data rather than theory. In that sense, data-driven models
are phenomenological, and, as such, they cannot be general-
ized to scenarios not represented in the input dataset.

Regardless of the modelling approach adopted, ecological-
intensification and pollination service models should also ad-
dress the needs of the end users. For instance, growers need
to balance their pollination needs with their wider farming
practices (Kleijn et al., 2019) whilst considering costs and
whether they are subject to subsidies (Osterman et al., 2021).
Thus, highly parameterized models might be difficult to ap-
ply if the necessary inputs require a considerable amount of
time to be estimated. In that regard, the data inputs for some
mechanistic models (MMs hereafter; e.g. Lonsdorf et al.,
2009) are publicly available datasets (see Sect. 2.1.1). Ad-
ditionally, machine-learning (ML hereafter) models can also
run on global datasets that are ready to use in public reposito-
ries. Hence, both the MMs and the ML models, once imple-
mented, can be easily fed with data from any region world-
wide. This property makes them highly applicable and trans-
ferable among regions.

The geographic scale of the assessment is key because it
differs depending on the stakeholder. Growers might be in-
terested in ranking locations regarding their potential polli-
nation service within a particular area of interest, while land-
scape managers or policy-makers may want to target pol-
icy interventions for maximum ecological gain over a much
wider geographic extent. In general, each user is interested in
knowing, at the scale of interest, the following: first, whether
there is one or more pollination service models that provide
reliable results. Second, whether these models are able to
quantify the reliability of their results. Finally, in the case
that there are models that provide results with a satisfactory
reliability, a hypothetical stakeholder would be interested in
knowing which one is more reliable. All in all, any exercise
that enables a deeper understanding of the potentialities and
limitations of different modelling approaches, such as the
one presented here, may be important to answer these ques-
tions.

Here, we use publicly available datasets extracted from the
Earth Engine Data Catalog (Gorelick et al., 2017) to evaluate
the ability of three types of pollination service models (MM,
ML and data-informed MM (DI-MM)) to correctly rank sites
according to their pollination service supply at three differ-
ent geographic levels (local, biome and global). We then val-
idate these results using a recently published global database
on crop pollination (CropPol; Allen-Perkins et al., 2022). We
also derive the importance of several factors in the observed
visitation rate of pollinators, including environmental vari-
ables, landscape properties and human–ecosystem interac-
tions.

2 Materials and methods

2.1 Modelling approaches

We used three different modelling approaches to predict pol-
linator services to crops and used a publicly available dataset
to validate the results of the three approaches. Specifically,
we used CropPol (Allen-Perkins et al., 2022), a global, dy-
namic and open database with information collected at 3022
agricultural sites with defined coordinates (see Fig. D1). It
compiles georeferenced information from 202 studies fo-
cused on crop pollination, each with multiple geolocated
field measurements. Such information includes the abun-
dance of pollinators (separated by taxonomical group), polli-
nator richness, crop variety or management practices, among
other features. Sampling methods include transects, using
sweep nets and focal observations. Records from studies that
use pan traps have been ruled out because pan traps attract
insects and, as such, bias the measurements obtained with
this methodology towards higher values compared to other
methods (Portman et al., 2020).
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2.1.1 The mechanistic model

We base the MM on a model developed by Lonsdorf et al.
(2009), widely used in the ecosystem service literature (Zu-
lian et al., 2013; Sharp et al., 2018). The model’s output is
a dimensionless score (with values ranging from 0 to 1) that
describes the expected rate of pollinator visits to a given loca-
tion. It uses the nesting and foraging suitability of the land-
scape for pollinators, calculated using experts’ assessment
and land cover maps, expressed in the form of lookup tables
that link land cover types with the availability of floral and
nesting resources. On top of that, the typical flight distance
is used to define the areas that are within the foraging range
of the pollinators (with a weight that decays with the distance
using a Gaussian decay function). The typical flight distance
is used here as a synonym for the typical homing distance
defined by Greenleaf et al. (2007), i.e. the distance at which
50 % of the individuals cannot return to their nest.

We extracted land cover layers from Collection 3 of the
Copernicus Global Land Service Land Cover layers (CGLS-
LC100; Buchhorn et al., 2020). This collection has impor-
tant advantages. First, it is globally available. Second, it
has a moderately high spatial resolution of 100 m. The spa-
tial resolution is several times lower than the typical flight
distance used for bumblebees and other wild bees (30 and
5 times lower than the typical flight distances considered in
this work, respectively), and therefore it is appropriate for
this study. Third, it offers not only discrete classes of land
cover type, but also continuous layers that estimate the cover
fraction of nine basic land cover types, such as shrubland
and cropland (see Table E1). This feature is significant, since
it allows us to combine the scores of several land cover types
in every pixel with a weight that corresponds to the cover
fraction of each land cover type. Fourth, it has been updated
yearly since 2015. Thus, we can use the version of the land
cover map corresponding to the sampling year in the Crop-
Pol dataset, for observations registered in 2015 or later (40 %
of the observations used). Observations before 2015 are val-
idated using the 2015 land cover map. Tree canopy cover is
extracted from the Global Forest Cover Change (GFCC) Tree
Cover Multi-Year Global 30 m dataset (Sexton et al., 2013).

Despite the advantages of the land cover maps used in this
work, we also note some drawbacks. In particular, the the-
matic resolution is relatively coarse. In the continuous land
cover map, all forest types are included in the category tree.
The discrete land cover map classification is more compre-
hensive regarding forests, including 12 different subtypes
(see Table E2), but it does not include other fine-scale habi-
tats, such as hedgerows, or distinguish between other sub-
types like improved versus semi-natural grasslands. In gen-
eral, the thematic resolution determines the level of detail
that can be incorporated into the input tables of the MM and
DI-MM, and this resolution is moderately low. Moreover, the
100 m spatial resolution implies that any difference in habi-

tat configuration at a scale < 100 m would not be taken into
account.

The MM is based on the assumption that the abundance
of pollinators is driven by the quality of resources for forag-
ing and nesting. To assess the availability of those resources,
Lonsdorf et al. (2009) propose the use of lookup tables,
which can be used to remap land cover types into scores for
nesting and floral resources’ quality. Quantitative field esti-
mates can derive nesting and floral resource values, but com-
monly they are derived from expert opinion. Ideally, input
information includes different seasons, different geographic
areas or biomes, and many pollinator species (or functional/-
taxonomical groups). For all the studies covered in this work,
such a level of detail is difficult to achieve. Thus, we tested
the performance of two different tables of floral and nesting
suitability across different land cover types based on expert
opinion. First, we used the coordinated assessment of three
leading experts in ecology (Ignasi Bartomeus, Francisco de
Paula Molina and Ainhoa Magrach), who based the scores
on their extensive experience and the values obtained by the
global assessment by Alejandre et al. (2023) for several basic
land cover types. We apply the lookup table to a land cover
map with continuous fields (each pixel describes the percent-
age of each land cover type; see Table E1). Second, we used
an adaptation of the tables used by the Joint Research Centre
(JRC) ESTIMAP (Zulian et al., 2013) to the land cover types
used in this work. We apply the lookup table to a land cover
map with discrete fields (each pixel corresponds to one land
cover type) but with more land cover types than in the first
approach (for example, distinguishing broadleaf and needle-
leaf forests, Table E2). The first approach (Table E1) has the
advantage of considering more than one land cover type per
pixel, weighing the scores based on the percentage of the
pixel (100× 100 m) covered by each land cover type. Never-
theless, thematic accuracy is higher for the second approach
(Table E2).

We classified pollinators according to CropPol into two
taxonomical groups, bumblebees (genus Bombus) and all
other wild bees, and computed MM scores for each taxo-
nomic group separately. We set a typical flight distance for
each taxonomical group based on the intertegular span reg-
istered in Traitbase (Kendall et al., 2019; Traitbase, 2023),
which includes records from species in Europe, North Amer-
ica and Central America, Australia, and Asia, and the pa-
rameters found by Greenleaf et al. (2007). We used records
in Traitbase from the species represented in the genus Bom-
bus to compute the typical flight distance for the bumblebee
model and from the species belonging to the remaining genus
for the other wild bees model. The values, in metres, were
in the ranges [913, 4932] and [0, 5444] for bumblebees and
other wild bees, respectively. The mean values were 2974 and
619 m, respectively, which were rounded to 3000 and 500 m
(see Table E4). Despite the wide range of possible flight dis-
tance values, we think that, using 3000 and 500 m, we rep-
resent the foraging behaviour of long-range foragers (bum-
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blebees) versus short-range foragers (other wild bees) well.
The maximum flight distance was set to 2 times the typi-
cal distance. We did not consider Apis species because their
abundance depends on human management rather than land-
scape properties, nor did we consider syrphid flies because
they are not central-place foragers – a central assumption of
MM modelling. Therefore, wherever pollination services are
provided fundamentally by species other than bumblebees or
other wild bees, the models presented here cannot be applied
directly.

In addition, we included several new components to test
whether they improve the predictive capacity of the original
model by Lonsdorf et al. (2009) (see Appendix A). These in-
clude the impact of landscape elements such as forest edges,
forest openness, crop field size, land cover diversity and dis-
tance to semi-natural land, plus an additional component to
model pollinator activity based on temperature and solar ra-
diation (Zulian et al., 2013). Moreover, in order to reward to
some extent those places where organic farming is practised,
we increased the score of some land cover types by 0.1 when
evaluating the model in organic farms. This increase was set
arbitrarily, but it is similar to the one applied by Zulian et al.
(2013) for the same concept. Management practices are ex-
tracted directly from CropPol.

2.1.2 The data-informed mechanistic model

The DI-MM is essentially the same as the MM approach but
uses a different input table (Table E3), calibrated as follows.
Instead of expert opinion, we used genetic algorithms (GAs)
with the help of the R package GA version 3.2.2 (Scrucca,
2013, 2017) to find the input values that maximized the
rank correlation in a subset of the CropPol data (the train-
ing dataset; see Sect. 2.2). Because of the need for training
data, the DI-MM was not evaluated using the entire CropPol
dataset but only the test set, which is totally independent of
the training set. We computed a population size equal to 400
table values and iterated through 150 generations. For each
table computed in every generation, we calculated Spear-
man’s rank correlation coefficient between the observed vis-
itation rate of the training sites and the DI-MM score. The
20 tables (5 %) with the highest rank correlation coefficient
in the training data, using a 5-fold cross-validation process,
were selected in every generation. The floral scores for land
cover types snow and water, as well as the nesting score for
snow, were forced to 0. The floral and nesting scores for the
remaining land cover types were free to vary from 0 to 1. Fi-
nally, the DI-MM output was computed using the MM with
the calibrated lookup table (Table E3), applied over a land
cover map with continuous fields.

2.1.3 Machine-learning models

We used scikit-learn 0.24.1 (Pedregosa et al., 2011) for
the ML models. We extracted the candidate predictors for

the ML model by combining different data sources re-
lated to landscape, soil properties, climate, topography, en-
ergy balance, water balance, ecological regions and human–
ecosystem interactions (see Table F1 and Appendix B).

After the preparation of the input data and subsequent split
into training and test datasets (Sect. 2.2), we set apart the
test data subset and evaluated the 55 possible estimators of
the type regressor available in the software package. Regres-
sors, in contrast to classifiers, are models that can be trained
to predict a continuous variable, for example the crop vis-
itation rate, as in the present case. For the selection of the
best candidates, we trained the 55 available estimators with
default parameters using the training set. The three estima-
tors that showed the best performance, in terms of showing
lower mean absolute error (MAE), were as follows: the sup-
port vector regressor (SVR), Bayesian ridge (BayR) and gra-
dient boosting regressor (GBR). We did not select only one
option in order to compare results of different types of ML
models too.

We explored the hyperparameter space in these three es-
timators and chose the best hyperparameters via a cross-
validated random search within a plausible interval of in-
put parameters using the training set (using the function
RandomizedSearchCV in scikit-learn). ML predictions were
computed in the test set using those estimators individually,
with the best set of hyperparameters for each of them.

While the MM and the DI-MM outputs provide dimen-
sionless scores between 0 and 1 as a proxy for the predicted
crop visitation rate, the ML models’ output is a value of the
predicted crop visitation rate and an estimation of the impor-
tance of each predictor in the models. Further, although in
the case of the MM and DI-MM approaches we were able to
provide different inputs for bumblebees and other wild bees
separately, the number of input data is especially critical for
the ML models. Thus, we evaluated the ML models using the
data for bumblebees and other wild bees combined; i.e. the
number of bumblebee observations was added to the number
of other wild-bee observations.

The computation of feature importance depends on the
specific ML model used. For the GBR, the computation of
feature importance is performed based on the impurity of the
tree at the nodes. A GBR is an ensemble model based on the
combination of results from different decision trees. In deci-
sion trees, a tree-like model is built, and each node represents
a condition based on a particular variable. The condition is
used to split the tree into new branches with the possible out-
comes of the decision. The nodes at the end of the branches
are the leaf nodes that represent the output of the model. The
impurity is a measurement of how mixed the instances are re-
garding the target variable. The goal of splitting branches in
the decision tree is to reduce impurity in the nodes as much
as possible. Impurity-based feature importance gives impor-
tance to features according to how much they contribute to
decreasing impurity. For the BayR and SVR models, the fea-
ture importance is computed using the permutation impor-
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tance technique. This technique consists of computing how
much the model’s performance decreases when the values
from a particular feature are replaced by random values. The
larger the decrease in the model’s performance, the larger the
importance assigned to the feature. In both cases (impurity-
based and permutation importance), the values computed for
every feature are normalized so that the sum is equal to 1.

2.2 Model validation

We validated the results of our three modelling approaches at
three different spatial scales: global, biome (see Table G1 for
the list of biomes included) and local scales. For the analyses
that included records from different studies (analyses at the
biome and global scales), we harmonized the measurements
of pollinator abundance. We transformed the measurements
of abundance into visitation rate (counts per minute) using
the total sampled time, and we expressed the values on a nat-
ural logarithmic scale:

ln(Vobs)= ln
(

abundance+ 1
total sampled time

)
. (1)

The visitation rate (visits recorded per minute) is a met-
ric commonly used in pollination studies (see, for example,
Garibaldi et al., 2013; Burkle et al., 2013; Rader et al., 2015)
as a proxy for the overall number of pollinator visits received,
which is directly linked to the reproductive success of plants.
The comprehensive study by Garibaldi et al. (2013) in 41
crop systems shows that such correlations are moderate, with
a mean Pearson’s correlation coefficient of 0.28 with fruit set
and 0.39 with pollen deposition.

We filtered the records present in CropPol to ensure
its completeness and coherence for the analyses (see Ap-
pendix C). Moreover, for the models that require training
(ML models and DI-MM), it was necessary to split the set
of records into training and test subsets.

The set of records used in the DI-MM and ML models
consists of 1007 records, which were split into training (790
records, 78 %) and test (217 records, 22 %) subsets. In gen-
eral, the training set should be large enough to enable ap-
propriate training of the models, while the test set should be
large enough to enable the appropriate evaluation of the mod-
els. Inevitably there is a trade-off between the two, and the
ideal percentage depends on the availability of data and the
specific application. Percentages of around 80 % and 20 %
are typical in ML (Géron, 2017), which is in line with the
percentages used here. We used the training set to calibrate
the tables in the DI-MM and at every step of the ML pipeline:
collinearity analysis, model selection, hyperparameter tuning
and computation of feature importance. The test data were set
apart at the beginning of the analyses and only used for the
computation of predictions, which is considered best prac-
tice to avoid any bias (Géron, 2017). Note that this implies
that the ML model and the DI-MM results are reported for
the sites of the test set, while the results of the other MMs

are reported for the entire dataset because they do not require
any training subset for the computation of the scores.

Given that observed abundances in the same study area
are, most likely, highly correlated, our random splits were
based on the author identifiers because a single author may
conduct different studies in the same area over different years
or crops. Hence, predictions were made on unseen study ar-
eas. At the same time, we wanted the training set to represent
the range of biomes present in the database. Hence, the ran-
dom split was stratified to preserve the proportional number
of records in every biome.

We performed the selection of the best-performing ML
models and their hyperparameter tuning using 5-fold cross-
validation in the training set. In this case, the scarcity of data
prevented us from using an author identifier to create the five
subsets. Instead, the random split for cross-validation was
based on the study identifier and stratified by biome.

2.3 Metrics

Finally, we assessed the quality of the predictions from the
models based on the observed rank correlation with obser-
vations, using Spearman’s coefficient (Sρ). Sρ allows us to
evaluate whether there is a monotonic relationship between
scores and the observed visitation rate, regardless of the
model type. This is important in this study because it is a
legitimate way to compare models that provide outputs in
different units (the MM and DI-MM give a dimensionless
score, while the ML models give predictions about the visi-
tation rate). In addition, these results are interesting for stake-
holders, as they are relative only to the specific study sites.
This aspect becomes valuable in supporting initiatives that
rely on comparing the performance of different sites within
an area of interest. For instance, the findings can be used to
prioritize the restoration of the worst-performing areas or to
determine optimal locations for crop cultivation.

In addition to Sρ , in order to enable the direct comparison
with other studies using different metrics, we also show the
coefficient of determination r2, the MAE and the root-mean-
square error (RMSE).

3 Results

3.1 Global scale

At a global scale, the MM, DI-MM and ML models show
contrasting results for all metrics used to evaluate their pre-
dictions. In Table 1, we show the results obtained for every
model tested at a global scale. The MM is only tested for the
taxonomical group of other wild bees (see explanation be-
low in this subsection), under different configurations. The
configurations correspond to the activation of the additional
modules (pollinator activity, open forest, etc.) implemented
in the MM (see more details in Appendix A). The configu-
rations considered for the MM execution are as follows: ev-
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Figure 1. Results at a global scale. Observed visitation rate (counts
per minute) versus MM-predicted score (pollinator activity config-
uration) for other wild bees (a), DI-MM-predicted score for other
wild bees (b), and ML predictions of visitation rate (counts per
minute) using the Bayesian ridge model for bumblebees and other
wild bees combined (c). The dashed lines show a linear fit. The Sρ
value obtained in each case is 0.17 (a), 0.00 (b) and 0.56 (c).

ery module activated (configuration all modules), every mod-
ule deactivated (configuration baseline) or modules activated
one by one.

The MM (in every tested configuration) shows a moderate
and positive rank correlation for the group of wild bees other
than bumblebees (Sρ ∈ [0.12,0.17]). Adding the new com-
ponents to the baseline model improved the agreement be-
tween observed and predicted values. In particular, the mod-
ule of pollinator activity based on temperature and solar radi-
ation increased the rank correlation for other wild bees at the
global level, from Sρ = 0.13 to Sρ = 0.17. For the DI-MM,
we see no correlation with the observations (Sρ = 0.00).
On the other hand, the ML models present the highest and
most significant rank correlation globally. In particular, the
BayR model achieves Sρ = 0.56 in the test set. Linear cor-
relation is also moderate and significant in the ML models
(r2
∈ [0.14,0.31], Fig. 1).

At a global scale, we see different offsets of the ob-
served visitation rate of bumblebees depending on the biome
(Fig. H1). We do not see this for other wild bees (Fig. H2).
The observations show a lower visitation rate in tropical
compared to temperate biomes, which is expected based on
bumblebees’ known distributions (Hines, 2008). Hence, a
meaningful analysis of the global data for bumblebees re-
quires the use of the variable biome as a random effect in a
linear mixed model. However, in this work we already per-
form the analysis per biome, so the analysis would be re-
dundant. Therefore, global results are reported only for other
wild bees in the MM and the DI-MM.

3.2 Biome scale

At the biome level, results are highly dependent on the biome
where we run the predictions (see Table 2). For simplicity,
we discuss here the results only from one MM configuration
(pollinator activity) and one ML model (BayR), but similar
conclusions arise for other MM configurations and ML mod-
els. In Fig. 2, we illustrate the results obtained in the biome
with more available sites (temperate broadleaf and mixed
forests).

Considering the group of other wild bees, the MM shows
a positive and statistically significant rank correlation in
three of the eight biomes: the two biomes characterized by
temperate forests (broadleaf and mixed forests (Sρ = 0.51)
and coniferous forests (Sρ = 0.34)) and by Mediterranean
forests, woodlands and scrub (Sρ = 0.22). The MM performs
poorly in tropical biomes, temperate grasslands, savannas
and shrublands, and boreal forest. For bumblebees, the MM
shows a positive and statistically significant rank correla-
tion in tree biomes: Mediterranean forests, woodlands and
scrub (Sρ = 0.24); temperate conifer forests (Sρ = 0.38); and
tropical and subtropical grasslands, savannas, and shrublands
(Sρ = 0.54).

The use of calibrated tables (DI-MM) does not show good
results for bumblebees (only the biome temperate grasslands,
savannas and shrublands has a significant rank correlation
(Sρ = 1.00) but with only three sites tested), whereas for
other wild bees it shows positive and significant rank corre-
lation in two biomes, including the one with the largest num-
ber of studies (temperate broadleaf and mixed forests (Sρ =
0.25) and tropical and subtropical moist broadleaf forests
(Sρ = 0.61)).

The rank correlation between ML predictions and obser-
vations is positive and significant in two of the six biomes
present in the test subset: temperate broadleaf and mixed
forests, with Sρ = 0.66 (the biome with, by far, the largest
number of sites and, thus, the biome that has more impact
in the training process), and temperate grasslands, savannas
and shrublands, with Sρ = 1.00 (the biome with the smallest
number of sites in the test subset, with only three). More-
over, in the other four biomes, the correlation observed was
moderate (Sρ ∈ [0.19,0.56]) but not statistically significant.
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Table 1. Metrics obtained comparing predictions and observations from different models, at a global scale: coefficient of determination (r2),
Spearman’s coefficient (Sρ ), mean absolute error (MAE) and root-mean-square error (RMSE). The MM is tested for the taxonomical group
of other wild bees at a global scale under different configurations, i.e. activating different modules one by one: pollinator activity, open forest,
etc. Test results of the baseline (no additional module) and all modules (every module activated) configurations are also reported. The ML
models (GBR, SVR and BayR) are applied to the combined data from the two taxonomical groups together. Here (and later in the text), “LC”
denotes land cover, “landsc.” denotes landscape and “dist.” denotes distance.

Taxonomical Model (configuration) r2 Sρ MAE RMSE
group

Other wild MM (baseline) 0.02∗∗∗ 0.13∗∗∗ 3.17 3.47
bees MM (pollinator activity) 0.02∗∗∗ 0.17∗∗∗ 3.06 3.37

MM (all modules) 0.02∗∗∗ 0.15∗∗∗ 3.11 3.42
MM (open forest) 0.02∗∗∗ 0.14∗∗∗ 3.22 3.51
MM (edge forest) 0.02∗∗∗ 0.13∗∗∗ 3.17 3.47
MM (edge crop fields) 0.02∗∗∗ 0.13∗∗∗ 3.17 3.47
MM (discrete LC types) 0.01∗∗∗ 0.13∗∗∗ 3.15 3.45
MM (landsc. complexity) 0.02∗∗∗ 0.14∗∗∗ 3.26 3.55
MM (dist. to semi-natural) 0.02∗∗∗ 0.12∗∗∗ 3.14 3.44
DI-MM 0.00 0.00 3.10 3.54

Bumblebees + ML (GBR) 0.29∗∗∗ 0.51∗∗∗ 1.12 1.37
other wild bees ML (SVR) 0.14∗∗∗ 0.38∗∗∗ 1.21 1.49

ML (BayR) 0.31∗∗∗ 0.56∗∗∗ 1.06 1.32

∗ p value< 0.05. ∗∗ p value< 0.01. ∗∗∗ p value< 0.001.

3.3 Local scale

Our results show there is no statistically significant individ-
ual rank correlation for most of the studies in CropPol (see
Table 3). The model with the largest percentage of studies
(21.05 %) showing agreement is the DI-MM for the group of
other wild bees.

We further explore whether the agreement of the predic-
tions with the observations depends on factors such as the
landscape variability, management practices and pollinator
dependency of the crop (extracted from Klein et al., 2007),
but we do not see any pattern dependent on those factors
(Fig. I1).

3.4 Variable importance in ML models

Variable importance for each model is described in Fig. 3.
For the BayR model, the most important variables are mean
diurnal range, management, elevation and annual mean tem-
perature. The GBR also gives special importance to these
four variables, in addition to shrubland cover, soil bulk den-
sity and direct evaporation from the soil. The SVR’s predic-
tors were all of similar importance. During the exploration
process, variables related to the crop cultivated at each study
site were taken into account. However, this information was
not incorporated into the models as it added complexity with-
out improving the models’ fit significantly.

3.5 Model selection decision flow chart

Given the results obtained, shown in the previous sections,
we show in Fig. 4 a model selection decision flow chart. A
hypothetical stakeholder, interested in applying a pollination
supply model, can follow the steps described in the flow chart
to decide on the most suitable model depending on the study
area and data available. Some questions in the flow chart in-
clude quantitative indicators to hint at the meaning of the
concepts local scale and enough data for ML. We stress that
these quantities are just a guide because the exact meaning of
these concepts depend on other factors. For example, for the
application of an ML model, the dataset must include a vari-
ety of patterns that reflects the context of the area where the
model is applied. In addition to the number of records, fac-
tors like data quality, diversity, representativity and indepen-
dence must be considered when evaluating the convenience
of using ML.

4 Discussion

In this study, we assessed and compared the capacity of
a mechanistic model (MM), a data-informed mechanistic
model (DI-MM) and machine-learning (ML) models to pro-
vide reliable predictions of rates of pollinator visitation to
crop fields. The three model types were evaluated in terms
of their capacity to rank sites correctly at three geographic
scales: local (study by study), individual biomes and global.
The MM and DI-MM, which require different inputs depend-
ing on the traits considered by the models (in this case forag-
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Table 2. Metrics obtained comparing, at every biome, predictions and observations: coefficient of determination (r2), Spearman’s coefficient
(Sρ ), mean absolute error (MAE) and root-mean-square error (RMSE). For the MMs, we show the results of the pollinator activity MM
configuration, and for the ML models, those of the Bayesian ridge regressor. At some biomes, the metrics could not be computed using the
ML models due to the absence of the biome in the testing set.

Biome Taxonomical Model r2 Sρ MAE RMSE Tested
group sites

Temperate broadleaf Other wild bees MM (pollinator activity) 0.22∗∗∗ 0.51∗∗∗ 2.85 3.16 522
and mixed forests Other wild bees DI-MM 0.06∗∗ 0.25∗∗ 2.67 3.19 130

Bumblebees MM (pollinator activity) 0.01∗∗ 0.01 3.05 3.33 522
Bumblebees DI-MM 0.00 −0.11 3.27 3.39 130
Bumblebees + other wild bees ML (BayR) 0.41∗∗∗ 0.66∗∗∗ 1.01 1.23 130

Tropical and Other wild bees MM (pollinator activity) 0.01 0.01 3.55 3.77 180
subtropical moist Other wild bees DI-MM 0.52∗∗∗ 0.67∗∗∗ 4.04 4.20 22
broadleaf forests Bumblebees MM (pollinator activity) 0.07∗∗∗ 0.02 5.41 5.52 180

Bumblebees DI-MM 0.00 −0.04 4.90 4.94 22
Bumblebees + other wild bees ML (BayR) 0.04 0.37 1.12 1.51 22

Mediterranean forests, Other wild bees MM (pollinator activity) 0.07∗∗ 0.22∗ 3.15 3.64 107
woodlands and scrub Other wild bees DI-MM 0.01 −0.16 3.85 4.13 40

Bumblebees MM (pollinator activity) 0.12∗∗∗ 0.24∗ 4.00 4.34 107
Bumblebees DI-MM 0.08 −0.13 4.47 4.70 40
Bumblebees + other wild bees ML (BayR) 0.00 0.19 1.29 1.61 40

Temperate conifer Other wild bees MM (pollinator activity) 0.09∗∗ 0.34∗∗ 3.00 3.12 83
forests Bumblebees MM (pollinator activity) 0.02 0.38∗∗∗ 2.94 3.28 83

Tropical and subtropical Other wild bees MM (pollinator activity) 0.00 −0.14 2.73 2.94 55
grasslands, savannas, Other wild bees DI-MM 0.16 0.26 2.12 2.29 12
and shrublands Bumblebees MM (pollinator activity) 0.26∗∗∗ 0.54∗∗∗ 4.82 4.91 55

Bumblebees DI-MM 0.03 0.13 5.36 5.37 12
Bumblebees + other wild bees ML (BayR) 0.35∗ 0.55 1.03 1.18 12

Temperate grasslands, Other wild bees MM (pollinator activity) 0.52∗∗∗ −0.58∗∗∗ 3.07 3.42 40
savannas and Other wild bees DI-MM 0.01 0.00 3.41 3.43 3
shrublands Bumblebees MM (pollinator activity) 0.00 0.11 3.51 3.59 40

Bumblebees DI-MM 0.95 1.00∗∗∗ 2.28 2.34 3
Bumblebees + wild bees ML (BayR) 0.97 1.00∗∗∗ 0.43 0.54 3

Tropical and subtropical Other wild bees MM (pollinator activity) 0.34∗ −0.06 4.02 4.30 17
dry broadleaf forests Bumblebees MM (pollinator activity) 0.18 −0.15 5.14 5.40 17

Boreal forests/taiga Other wild bees MM (pollinator activity) 0.01 0.03 4.66 4.70 10
Other wild bees DI-MM 0.16 −0.14 4.73 4.78 10
Bumblebees MM (pollinator activity) 0.00 0.10 2.79 2.95 10
Bumblebees DI-MM 0.05 −0.04 2.86 3.02 10
Bumblebees + other wild bees ML (BayR) 0.21 0.56 0.89 1.12 10

∗ p value< 0.05. ∗∗ p value< 0.01. ∗∗∗ p value< 0.001.

ing range and nesting and floral preferences), were evaluated
for bumblebees and other wild bees separately. The ML mod-
els, in contrast, were evaluated using the data for bumblebees
and other wild bees combined to increase the number of input
data, which is critical for data-driven models.

The ML models, in particular the Bayesian ridge regres-
sor, performed well at the global level (Sρ = 0.56). The ML
models also worked well at the biomes where more data are
available, with Sρ of up to 0.66. The MM, when applied to
the group of other wild bees, gives moderately good results

at the global level (Sρ ∈ [0.12,0.17]) and performed well at
the biomes characterized by temperate and Mediterranean
forest (Sρ ∈ [0.22,0.51]). For bumblebees, we observe three
biomes with good fits between the MM scores and the ob-
servations. Finally, the DI-MM provides good results for the
group of other wild bees at the biome with more test sites
(Sρ = 0.25). This model also gives, in the group of other
wild bees, the highest percentage of studies with a positive
and statistically significant rank correlation (21.05 %).
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Figure 2. Results in the biome temperate broadleaf and mixed
forests. Visitation rate (counts per minute) versus MM score (pol-
linator activity configuration) for other wild bees (a) and bumble-
bees (b); DI-MM score for other wild bees (c) and bumblebees (d);
and ML predictions of visitation rate (counts per minute) using the
Bayesian ridge model for bumblebees and other wild bees com-
bined (e). The dashed lines show a linear fit. The Sρ value obtained
in each case is 0.51 (a), 0.01 (b), 0.25 (c), −0.11 (d) and 0.66 (e).

The results obtained at different biomes show that the MM,
at least for other wild bees, works best in biomes dominated
by temperate or Mediterranean forests. The input table was
made from expert opinion by co-authors of this work with
no differentiation between biomes, based on global pollina-
tor abundance scores per land cover type (Alejandre et al.,
2023). As highlighted by Gardner et al. (2020), expert-based
tables can also suffer from different types of bias. In this case,
the three biomes where the MM performs well for other wild
bees are in Europe or the USA, which are the geographic
regions with which the authors of the input table are more
familiar. Thus, we cannot rule out the possibility that the
expert-based tables used in this work suffer from a signifi-
cant bias that makes the MM more applicable to geographic
regions that are more familiar to the expert contributors.

Even though mechanistic models have previously esti-
mated pollination supply at a continental scale, beyond the

Table 3. For each model, the percentage of studies where we found
a positive and statistically significant rank correlation (Sρ ).

Model Taxonomical Studies with
group p < 0.05 & Sρ > 0

(%)

MM (baseline) Other wild 6.03 %
MM (all modules) bees 3.45 %
MM (discrete LC types) 6.90 %
MM (dist. to semi-natural) 3.45 %
MM (edge crop fields) 6.03 %
MM (edge forest) 6.03 %
MM (landsc. complexity) 6.90 %
MM (open forest) 6.90 %
MM (pollinator activity) 3.45 %
DI-MM 21.05 %

MM (open forest) Bumblebees 6.90 %
MM (landsc. complexity) 6.90 %
MM (edge forest) 5.17 %
MM (edge crop fields) 6.03 %
MM (pollinator activity) 6.03 %
MM (discrete LC types) 6.90 %
MM (dist. to semi-natural) 6.90 %
MM (all modules) 6.90 %
MM (baseline) 6.90 %
DI-MM 5.26 %

ML (SVR) Bumblebees + 10.53 %
ML (GBR) wild bees 5.26 %
ML (BayR) 10.53 %

extent of biomes (e.g. Zulian et al., 2013), they have not done
so globally. Thanks to the data available in recently com-
piled databases like CropPol, we could prove that it is fea-
sible to use the MM (with relatively simple lookup tables)
to compute reliable predictions at large geographic scales.
These lookup tables are an attempt to represent the glob-
ally averaged preferences of pollinators. However, it is also
clear that tables of floral and nesting resources that work
well in particular biomes do not necessarily yield good re-
sults in other biomes. Indeed, the scores are directly associ-
ated with the behaviour of bee species and most species are
specific to particular biomes. Looking at the results for bum-
blebees, the convenience of not applying the MM beyond the
extent of biomes seems even stronger. At the global scale,
we observe that different biomes show very different visita-
tion rates. Consequently, it would be sensible to use specific
lookup tables for each biome if applying the MM to a ge-
ographic scale greater than one biome, such as continents.
Otherwise, we must use the estimations of the MM with cau-
tion.

As an additional modification of the original MM, we used
a training set to calibrate the input tables of floral and nest-
ing resources. This approach, i.e. using data instead of expert
opinion to inform the input tables of the models, was inves-
tigated in detail by Gardner et al. (2020). These authors cal-
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Figure 3. Normalized feature importance computed for three ML
models: support vector regressor (SVR), Bayesian ridge (BayR) and
gradient boosting regressor (GBR). Feature importance values were
normalized in each model so that the sum equals 1. The predictors
used for biomes and crops are the result of a one-hot encoding of
two formerly categorical features (i.e. one variable is decomposed
into several true or false variables). To report their importance in
the models, we show the sum of the importance of all these decom-
posed predictors. Abbreviations (here and later in the text): Transp.
vegetation, transpiration from vegetation; Prec. driest month, pre-
cipitation of driest month.

ibrated the input table of a more sophisticated process-based
model using data collected across Great Britain and obtained
very good results in terms of r2, more so than the moder-
ately good rank correlation obtained here with the DI-MM.
The reason for a higher agreement in Gardner et al. (2020)
probably arises from the use of a more sophisticated process-
based model, a detailed calibration of the tables that included
feedback from expert opinion and the application of the mod-
els at a much smaller geographic scale (Great Britain versus
global). However, looking beyond r2, Gardner et al. (2020)
warn of the risk of getting unrealistic parameter values from a
purely data-driven calibration of the tables. In that regard, the
two approaches are complementary: on the one hand, using
observational data to inform the input tables of mechanistic
or process-based models can potentially overcome the diffi-
culties of computing predictions where expert knowledge is
limited; on the other hand, expert knowledge is essential to
assess the plausibility of the scores and is the most reliable
source of information for those habitats where observational
data are scarce.

When analysing the importance of the variables in the ML
models, we see that the models use the set of features in dif-
ferent ways (Fig. 3). The SVR is the model that distributes
the weight more evenly among the variables, in contrast to
the GBR, which mainly uses seven variables. In any case,
the three models consider a mix of bioclimatic variables and

other variables, such as organic management practices (yes
or no), elevation or shrubland cover. Therefore, having a di-
verse range of variables that adequately describe each loca-
tion is crucial for achieving a good performance of the ML
models.

To our knowledge, this study is the first to globally validate
the mechanistic model by Lonsdorf et al. (2009). Moreover,
it is also one of the first studies that uses ML models to com-
pute predictions of pollinator crop visitation rates. Kammerer
et al. (2021) also used an ML model (a random forest) to pre-
dict the pollinator visitation rate, but the methodology that
the authors apply prevents us from a direct comparison. The
search for parameters is a crucial step in any ML pipeline,
and it is key that their test set does not participate in the
process. Furthermore, Kammerer et al. (2021) evaluate the
model’s performance using 10-fold cross-validation on the
same dataset used to select the parameters of the ML model.
In contrast, we paid particular attention to having a test set
completely independent of the training set.

Whenever the extent of the area of interest covers several
biomes and the necessary expert knowledge for elaborating
specific tables for each biome is not feasible, we have shown
that data-driven approaches can be an excellent option to pre-
dict pollination supply. The ML models performed well at a
global level, with a statistically significant Sρ of 0.56. The
ML models also perform very well in the biome with most
available records (temperate broadleaf and mixed forests),
with Sρ = 0.66. The DI-MM works moderately well for the
group of other wild bees in situations where more data are
available, as expected for a data-driven method, i.e. at the
biome with the greatest number of sites (Sρ = 0.25).

The global scope of this study gives rise to certain caveats.
An important one is that we require data from different stud-
ies and regions, collected using different methodologies and
at different times of the year. The raw input data are hetero-
geneous, and this affects the validation process. The method-
ology used here harmonizes the data, but it also comes at the
cost of some data pruning. Moreover, an additional limita-
tion is that the land cover maps used here do not have spe-
cific categories for individual crops or at least for pollinator-
dependent and non-dependent crops. This is important be-
cause pollinator-dependent crops influence wild-bee popula-
tions in different ways. Such effects may prove favourable if
an adequate number of semi-natural habitats are present in
the vicinity, by means of facilitating the provision of food re-
sources (Westphal et al., 2003; Holzschuh et al., 2012). These
impacts may be detrimental if the benefits are diluted by an
overabundance of this form of land cover type (Holzschuh
et al., 2016; Eeraerts et al., 2021). Given that the models have
been run on spatial layers available at a global scale, the the-
matic resolution cannot be as fine as the resolution of other
land cover products focused on specific regions or countries.
The spatial resolution is also coarser than the one needed to
capture the effect of micro-habitat differences. This is a prob-
able cause for the poor results observed at the local scale.
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Figure 4. Model selection decision flow chart to show the steps that a stakeholder can take to decide on the most suitable model.

Fine-scale land cover inputs also enable the application of
more sophisticated MMs (Häussler et al., 2017), thereby aug-
menting the capabilities of MMs. More sophisticated models
can be considered for ML too. In addition to the ML mod-
els tested in this work (i.e. the set of models available in the
Python library scikit-learn), exploring the use of XGBoost
or deep learning models would be very interesting. In sum-
mary, there is significant scope to apply more sophisticated
MM, DI-MM and ML models, which would allow for more
refined performance comparisons.

5 Conclusions

Our study shows the different applicability of model types at
different spatial scales, as shown in the model decision flow
chart in Fig. 4. For farmers, who might be interested in rel-
atively local interventions, the MM is a good option as long
as enough ecological knowledge is available to provide re-
alistic input tables for the MM. However, ML models can
fill the gap in those situations where such ecological knowl-
edge is missing. The quality of these models is dependent on
the quality of the observational data, but we have shown in

this work that currently available open datasets provide the
opportunity for them to be run at virtually any place (with
many limitations, for example the representativeness of the
observational data when applied to a completely different
area of study or the spatial and thematic resolution of global
datasets). Moreover, there are tools freely available online,
such as k.Explorer (IMP, 2023), that facilitate the computa-
tion and visualization of pollination service models for users
not familiar with coding. Despite the MM being potentially
applied over large regions (Image et al., 2022), the ML mod-
els seem a very useful approach for policy-makers or land-
scape managers, who usually need to characterize very wide
geographic extents. Regarding the variables present in the
ML models, the three models assign different weights. How-
ever, they have in common the need to consider a combi-
nation of bioclimatic variables and other variables such as
management practices, elevation or shrubland cover.

Appendix A: New modules in the mechanistic model

New modules have been added to the original model by
Lonsdorf et al. (2009) to test whether they increase the agree-
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ment of the model with the observations. The character of
these new modules is merely exploratory, and, as such, they
are implemented in a simplistic way. The new modules can
be classified into two categories according to the type of im-
pact that they are expected to have on pollinators. The first
type consists of features that enhance the expected availabil-
ity of flowers (in terms of quantity or diversity). Therefore,
they are used to modify the scores on floral resources, adding
a bonus that ranges between 0 and 0.25, depending on the
conditions at each location. The range (0–0.25) was set ar-
bitrarily, with the aim of adding a moderate boost to those
areas where landscape properties are favourable to pollina-
tors. Given that each module of this type can incrementally
increase the floral score of every pixel by 0.25, the combined
effect of more than one module can yield very high (and un-
realistic) bonus values. To avoid this, we use a bonus value
equal to the maximum of them all. In addition, we enforce
the condition that the final floral score can never be higher
than 1. The following four modules are of this type:

– Forest edges. Floral resources tend to be more abundant
at the edge of forests because of the higher availability
of light. A bonus of 0.25 is assigned to the pixels at the
edge of the forests.

– Forest openness. Similarly to forest borders, light is
more accessible in more open forests or forest patches.
We use the inverse of the tree canopy cover and scale the
values to the range between 0 and 0.25, and we assign
that bonus to forest pixels.

– Crop field size. Reducing the size of the fields has a pos-
itive effect on pollinators (Fahrig et al., 2015). We in-
cluded this effect indirectly, by means of identifying the
borders in crop fields (defining crop field as connected
area classified as annual crop). For the same total area,
the length of the field borders will be larger when the
fields are smaller. The floral score of those pixels iden-
tified as crop field border is incrementally increased by
0.25.

– Landscape complexity. The MM factors in the effect of
the surroundings by the fact of using the flight distance,
but it actually does not capture the landscape complex-
ity, in the sense of having different land cover types in
the crop field surroundings. We modelled this effect by
computing the number of different land cover types (ne-
glecting water and urban types), within a radius equal to
the typical distance of flight. We set a cut-off value of 5,
meaning five or more land cover types within the con-
sidered radius meant a maximum bonus of 0.25.

The second type of additional module covers those fea-
tures that do not change the landscape suitability but modify
the expected visitation rate. This is modelled applying a fac-
tor to the MM score that aims to model the decay of the visi-

tation rate under certain conditions. We applied two of these
modules.

– Pollinator activity. The activity of pollinators strongly
depends on the temperature of their bodies, which in
turns depends directly on the ambient temperature and
solar irradiance (Corbet et al., 1993). A similar compo-
nent has been applied in the past by other authors as a
component of mechanistic models (Zulian et al., 2013;
European Commission Joint Research Centre, 2018). It
is based on a linear relationship, found by Corbet et al.
(1993), between the temperature and the percentage of
active insects, using the black globe temperature as an
approximation for the temperature of the insect bodies.
The pollinator activity (Apollinator) is computed as fol-
lows:

TMbg ={
0 if TM < Tmin,

−0.62+ 1.027TM + 0.006RM 24
d

otherwise,
(A1)

Tbg =max
M

{
TMbg

}
, (A2)

Apollinator = f0+ f1 Tbg, (A3)

where TMbg is the black globe temperature for month M
in degrees Celsius, TM is the average temperature of air
at 2 m above the surface for month M in degrees Cel-
sius (using ERA5-Land monthly averaged data; Muñoz
Sabater, 2019) and RM is the average solar radiation
in W m−2 for month M (using TerraClimate; Abat-
zoglou et al., 2018). The variable d stands for day length
in hours, is computed using the equations in Forsythe
et al. (1995) and is used to obtain average solar radia-
tion during the day from RM . The parameters Tmin, f0
and f1 depend on the taxonomical group. Corbet et al.
(1993) find coefficients for honeybees and bumblebees.
We used the parameters of honeybees for our group of
other wild bees given that the size of honeybees is more
comparable to the typical size of the individuals in this
group. Tmin stands for the minimum air temperature for
pollinator activity, while f0 and f1 are the regression
coefficients obtained by Corbet et al. (1993). The maxi-
mum value of TMbg is used because we assume that mea-
surements are normally taken in periods of high polli-
nation activity. In the case Apollinator > 1, the value is
capped at 1.

– Distance to semi-natural land. Pollination supply is sen-
sitive to the distance to semi-natural areas, as shown in
Garibaldi et al. (2011). Even though the model already
takes this into account implicitly (by giving higher
scores to land cover types classified as semi-natural and
weighting them by the distance to the computed pixel),
European Commission Joint Research Centre (2018) in-
cluded it as an additional component of the model to
reinforce its importance. In our study, it is included to
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test whether this reinforcement is relevant or redundant.
This module consists of applying a factor, dependent on
the distance to semi-natural areas, to the pollinator score
Spollinator. We used the decay rate of the visitation rate
from Ricketts et al. (2008):

Smodified
pollinator = Spollinator · e

−0.00104×D, (A4)

where D is distance to semi-natural areas in metres.

Appendix B: More details on the input data of the
machine-learning models

The proportion of each land cover type is computed using
a weighted average of land cover proportion with a Gaus-
sian kernel function around each survey site location, with a
sigma value corresponding to the typical distance of flight of
the taxonomical group. Therefore, one value per taxonomical
group is computed. To get a single value, the average was ap-
plied. The same procedure (one value per taxonomical group
averaged to get a single value) was applied for the variable
pollinator activity.

Some variables were extracted from dynamic datasets that
are composed of a number of temporal slices (e.g. TerraCli-
mate consists of monthly data). In those cases, we extracted
the value of the predictors as the mean using only the date
range corresponding to the sampling year of the associated
site in CropPol. In cases where the sampling year was out of
the temporal boundaries of the dataset, we averaged over the
whole temporal range of the dataset.

We analysed the collinearity of the numeric predictors and
clustered them hierarchically. With that aim, we first com-
puted the Spearman correlation matrix Mρ and defined a dis-
tance matrix MD = 1−Mρ . Then, we performed Ward’s link-
age on that matrix to aggregate predictors hierarchically (see
Fig. F1). The clusters of predictors finally selected depend
on a threshold of the distance between them. To set such a
threshold, we performed cross-validation in the training set
within an interval of values, and we selected a value for the
distance of 0.75 in order to have the maximum level of clus-
tering while keeping the mean Spearman’s coefficient high
(see Fig. F2). With that threshold, we obtained 13 clusters
from the original 56 numeric predictors, as shown in Ta-
ble F2. In addition, we checked the variance inflation factor
of the variables, and the maximum value was 9.22, below the
critical threshold of < 10 proposed by Dormann et al. (2012)
as a rule of thumb.

The categorical variables terrestrial biome and crop
species were transformed into numerical values by one-hot
encoding; that is to say, each category of those variables is
used to create a new predictor with only two possible values:
present (1) or not present (0). The variable farming manage-
ment practices was transformed into numerical values from
0 to 3 by ordinal encoding, with the management options or-
dered according to pollinator friendliness: conventional (0),

integrated pest management (1), unmanaged (2) and organic
(3). Sites where management practices were unknown were
assumed to be conventional. After these transformations, we
had a total number of 97 numerical predictors (Table F1). As
mentioned above, the collinearity analysis enabled the clus-
tering of 56 predictors into 13 clusters. Moreover, four crops
and one biome were not present in the training set, and the
corresponding variables created by one-hot encoding could
be removed from the training set. Therefore, we removed 48
predictors from the total number of 97, and used a final num-
ber of 49 (1 variable for management, 8 for biomes, 27 for
crops and the already-mentioned 13 numeric representing the
13 clusters of 56 predictors)

Appendix C: Filters

The records present in CropPol (3394 sites) were filtered to
ensure that enough information was available for the analyses
and that the input data for these analyses were as coherent as
possible (e.g. harmonizing units of the pollinator visitation
rate). We prepared three datasets:

– Dataset-1 (1403 records), for the analyses using the MM
at the local scale;

– Dataset-2 (1027 records), for the analyses using the MM
at the scales of biomes and global, where the abun-
dances must be harmonized across different studies;

– Dataset-3 (1007 records), for the analyses involving the
split of the data into training and test subsets.

We applied six common filters to the preparation of the
three datasets and then particular filters for each of them. Af-
ter applying the common filters, the filtered dataset contains
1416 records (42 %). These common filters are as follows:

1. Coordinates defined (3022 records). The coordinates re-
fer to the position of each field sampled in the study.

2. At least one taxonomical group with abundance higher
than 0 (1926 records). Absences were not considered
because two records with 0 abundance cannot be har-
monized with respect to sampled time; i.e. two absences
would be equal regardless of whether they were ob-
served during 1 min or 1 h.

3. Observations more recent than 1991 (3377 records).
This filter ensures that the temporal boundaries of the
input datasets are not far from those years. After the ap-
plication of the filters, the oldest observation dates from
2001.

4. Sampling method different than pan trap (2226
records). Pan traps attract insects and, as such, increase
the number of observations in relation to other methods
(Portman et al., 2020).
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5. Integer values at every site, with a tolerance of 0.05
(3309 records). This filter is meant to harmonize, to
some extent, the methodology used by the contribu-
tors to CropPol, in terms of how the abundances are
reported. The tolerance is set because some authors in
CropPol add a small amount (e.g. 0.01) to the abun-
dance value as a flag for rare specimens, but it does
not have any effect on the integer part of the actual
abundance value. On the other hand, some authors re-
port abundances in different units, e.g. observations per
flower per minute, that were processed by the data cu-
rators of CropPol in order to register total abundance
values in the same units (number of observations). We
preferred to use the studies that report number of obser-
vations directly. In any case, this filter removes only a
few records from the dataset (85 records, only 0.25 %
of the total number).

6. Coordinates vary within the study (3366 records). The
goal of this filter is to rule out sites with inaccurate co-
ordinates because it is not possible that every site has
the same coordinates if their positions are accurately de-
fined in the dataset.

After the application of the common filters, the additional
filter to obtain Dataset-1 is as follows:

– Studies with at least three sites (1403 records, 116 stud-
ies). Harmonization of measurements using the total
sampled time was not needed because sampling effort
was consistent across sites within every study.

After the application of the common filters, the additional
filter to obtain Dataset-2 is as follows:

– Defined sampled time (1027 records). We harmonize
measurements across studies using the total sampled
time (see Sect. 2.2). Hence, we must have a value for
this variable in every site of Dataset-2. This filter was
not necessary for the analysis at the local scale because
sampling effort was consistent across sites within stud-
ies.

After the application of the common filters, the additional
filters to obtain Dataset-3 are as follows:

– Defined sampled time (1027 records).

– Fewer than seven not defined values of environmental
variables per site (1389 sites). The value of many en-
vironmental variables at the coordinates of a few sites
is not defined due to a lack of coverage of the input
datasets at these particular locations. We filtered out
those records.
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Appendix D: The crop pollination database (CropPol)

Figure D1. Location of the records available in CropPol. Image generated with © Google Earth Engine.

Appendix E: Input data of the mechanistic models

Table E1. Floral and nesting resource scores (from 0 to 1), when
using the land cover map with continuous fields. The floral re-
source score represents a relative measurement of typical foraging
resources when comparing land cover types. The nesting resource
score represents a relative measurement of habitat extent suitable
for nesting. Values are adapted from the global assessment by Ale-
jandre et al. (2023). Management+ stands for the additional score
added to land cover types when evaluating the model in a location
where organic farming is practised.

Land Nesting ground Nesting Floral Management+
cover and wood cavity

Bare 0.70 0.70 0.40 0.00
Crop 0.20 0.20 0.30 0.00
Grass 0.90 0.90 0.85 0.10
Moss 0.90 0.90 1.00 0.00
Shrub 1.00 1.00 0.80 0.10
Tree 0.80 0.80 0.50 0.10
Snow 0.00 0.00 0.00 0.00
Urban 0.20 0.10 0.20 0.00
Water 0.00 0.00 0.00 0.00
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Table E2. Floral and nesting resource scores (from 0 to 1), when using the land cover map with discrete land cover types. The floral resource
score represents a relative measurement of typical foraging resources when comparing land cover types. The nesting resource score represents
a relative measurement of habitat extent suitable for nesting. Values are derived from the adaptation of the tables used by (Zulian et al., 2013)
to the land cover types used in our study. Management+ stands for the additional score added to land cover types when evaluating the model
in a location where organic farming is practised.

Land cover Nesting ground Nesting Floral Management+
and wood cavity

Shrub 0.93 0.93 0.87 0.10
Herbaceous 0.80 0.80 1.00 0.00
Annual crops 0.20 0.20 0.10 0.00
Urban 0.22 0.22 0.10 0.00
Sparse vegetation 0.50 0.50 0.23 0.00
Snow/ice 0.00 0.00 0.00 0.00
Permanent waterbodies 0.00 0.00 0.00 0.00
Wetland 0.30 0.30 0.60 0.00
Moss and lichen 0.90 0.90 1.00 0.00
Closed forest, evergreen needleleaf 0.80 0.80 0.30 0.10
Closed forest, evergreen broadleaf 0.80 0.80 0.90 0.10
Closed forest, deciduous needleleaf 0.80 0.80 0.30 0.10
Closed forest, deciduous broadleaf 0.80 0.80 0.90 0.10
Closed forest, mixed 0.80 0.80 0.60 0.10
Closed forest, other 0.80 0.80 0.60 0.10
Open forest, evergreen needleleaf 0.80 0.80 0.30 0.10
Open forest, evergreen broadleaf 0.80 0.80 0.90 0.10
Open forest, deciduous needleleaf 0.80 0.80 0.30 0.10
Open forest, deciduous broadleaf 0.80 0.80 0.90 0.10
Open forest, mixed 0.80 0.80 0.60 0.10
Open forest, other 0.80 0.80 0.60 0.10
Oceans, seas 0.00 0.00 0.00 0.00

Table E3. Floral and nesting resource scores, obtained for the two pollinator groups (bumblebees and other wild bees), after a calibration
process. The floral resource score represents a relative measurement of typical foraging resources when comparing land cover types. The
nesting resource score represents a relative measurement of habitat extent suitable for nesting. Management+ stands for the additional score
added to land cover types when evaluating the model in a location where organic farming is practised.

Land cover Nesting Floral Nesting Floral Management+
(other wild bees) (other wild bees) (bumblebees) (bumblebees)

Bare 0.00 0.08 0.29 0.51 0.00
Crop 0.64 0.29 0.58 0.48 0.00
Grass 0.27 0.75 0.21 0.91 0.10
Moss 0.47 0.39 0.47 0.39 0.00
Shrub 0.61 0.52 0.44 0.24 0.10
Tree 0.45 0.66 0.95 0.24 0.10
Snow 0.00 0.00 0.00 0.00 0.00
Urban 0.68 0.52 0.47 0.61 0.00
Water permanent 0.00 0.00 0.00 0.00 0.00
Water seasonal 0.00 0.00 0.00 0.00 0.00

Web Ecol., 23, 99–129, 2023 https://doi.org/10.5194/we-23-99-2023



A. Giménez-García et al.: Pollination supply models from a local to global scale 117

Table E4. Taxonomical groups considered in this work. Distances
based on the intertegular span registered in Traitbase (Kendall et al.,
2019; Traitbase, 2023) and the parameters found by Greenleaf et al.
(2007). Ground nesting refers to nests excavated by the pollinators
on the ground. Cavity nesting refers to existing cavities, e.g. bur-
rows and nests of small animals. Other wild bees are mainly soil
nesters (Danforth et al., 2019), while bumblebees usually prefer
what is defined here as cavities (O’Connor, 2013).

Taxonomical Nesting ground Nesting Flight
group and wood cavity distance (m)

Bumblebees No Yes 3000
Other wild bees Yes No 500
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Appendix F: Predictors in the machine-learning
model

Table F1. Variables used as predictors in the machine-learning pipeline. We also show the dataset from where the measurements were
extracted, with a reference.

Group Variable Dataset Reference

Landscape Bare or sparse vegetation cover CGLS-LC100 Collection 3 Buchhorn et al. (2020)
Cropland (annual crops) cover CGLS-LC100 Collection 3
Grassland cover CGLS-LC100 Collection 3
Moss and lichen cover CGLS-LC100 Collection 3
Shrubland cover CGLS-LC100 Collection 3
Forest cover CGLS-LC100 Collection 3
Built-up cover CGLS-LC100 Collection 3
Distance to semi-natural habitats CGLS-LC100 Collection 3
Land cover diversity CGLS-LC100 Collection 3
Terrestrial biomes RESOLVE Ecoregions 2017 Dinerstein et al. (2017)

Soil properties Bulk density (fine earth) at 10 cm OpenLandMap soil bulk density Hengl (2018a)
Clay content at 10 cm OpenLandMap soil clay content Hengl (2018b)
Sand content at 10 cm OpenLandMap soil sand content Hengl (2018d)
Organic carbon at 10 cm OpenLandMap soil organic carbon content Hengl and Wheeler (2018)
Water content at 10 cm at 33 kPa OpenLandMap soil water content at 33 kPa Hengl and Gupta (2019)
pH in water at 10 cm OpenLandMap soil pH in H2O Hengl (2018c)

Bioclimatic Annual mean temperature WorldClim BIO Variables V1 Hijmans et al. (2005)
Mean diurnal range WorldClim BIO Variables V1
Isothermality WorldClim BIO Variables V1
Temperature seasonality WorldClim BIO Variables V1
Max temperature of warmest month WorldClim BIO Variables V1
Min temperature of coldest month WorldClim BIO Variables V1
Temperature annual range WorldClim BIO Variables V1
Mean temperature of wettest quarter WorldClim BIO Variables V1
Mean temperature of driest quarter WorldClim BIO Variables V1
Mean temperature of warmest quarter WorldClim BIO Variables V1
Mean temperature of coldest quarter WorldClim BIO Variables V1
Annual precipitation WorldClim BIO Variables V1
Precipitation of wettest month WorldClim BIO Variables V1
Precipitation of driest month WorldClim BIO Variables V1
Precipitation seasonality WorldClim BIO Variables V1
Precipitation of wettest quarter WorldClim BIO Variables V1
Precipitation of driest quarter WorldClim BIO Variables V1
Precipitation of warmest quarter WorldClim BIO Variables V1
Precipitation of coldest quarter WorldClim BIO Variables V1

Topography Continuous heat-insolation load index Global ALOS CHILI Theobald et al. (2015)
Topographic diversity Global ALOS Topographic Diversity Theobald et al. (2015)
Elevation SRTM Digital Elevation Data Version 4 Jarvis et al. (2008)

Water and energy Total evapotranspiration MOD16A2.006 Running et al. (2017)
balance Total potential evapotranspiration MOD16A2.006

Average latent heat flux MOD16A2.006
Average potential latent heat flux MOD16A2.006
Transpiration from vegetation PML (V2) Zhang et al. (2019)
Direct evaporation from the soil PML (V2) Gan et al. (2018)
Interception from vegetation canopy PML (V2) Zhang et al. (2016)
Gross primary product PML (V2)
Downward surface shortwave radiation TerraClimate Abatzoglou et al. (2018)
Climate water deficit TerraClimate
Palmer drought severity index TerraClimate
Runoff TerraClimate
Soil moisture TerraClimate
Snow water equivalent TerraClimate
Vapour pressure TerraClimate
Vapour pressure deficit TerraClimate
Wind speed at 10 m TerraClimate
Pollinator activity TerraClimate, ERA5-Land monthly averaged Muñoz Sabater (2019)

Human–ecosystem Index of human modification of terrestrial lands CSP gHM: Global Human Modification Kennedy et al. (2019)
interactions Farming management practices CropPol Allen-Perkins et al. (2022)

Crop species CropPol
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Table F2. Clusters of features represented by the selected features that are used as proxies for the rest of the variables in the cluster.
Abbreviations: cont., continuous; evapotr., evapotranspiration; pot., potential; prec., precipitation; dist., distance.

Proxy Cluster

Annual mean T Annual mean T , isothermality, T seasonality, min T coldest month, T annual range, mean T driest
quarter, mean T coldest quarter, snow water equivalent, vapour pressure

Mean diurnal range Mean diurnal range, grassland cover

Max T warmest month Max T warmest month, mean T warmest quarter, cont. heat-insolation load, total potential evapotr., avg
pot. latent heat flux, shortwave radiation, vapour pressure deficit, pollinator activity

Mean T wettest quarter Mean T wettest quarter, annual prec., prec. wettest month, prec. wettest quarter, prec. warmest quarter,
dist. to semi-natural, soil pH, cropland cover, forest cover, land cover diversity

Prec. driest month Prec. driest month, prec. seasonality, prec. driest quarter, prec. coldest quarter, climate water deficit

Transp. vegetation Transp. vegetation, interception canopy, total evapotranspiration, gross primary product, avg latent heat
flux, runoff, bare land cover

Elevation Elevation, soil clay content, soil sand content, topographic diversity, wind speed at 10 m

Direct evaporation soil Direct evaporation soil, soil organic carbon

Human modification Human modification, built-up cover

Drought severity index Drought severity index, soil moisture

Soil bulk density Soil bulk density, soil water content

Moss and lichen cover Moss and lichen cover

Shrubland cover Shrubland cover

Figure F1. Dendrogram showing the hierarchical clustering of the variables. On the x axis, we show the distance between variables, based
on the rank correlation found between the variables and Ward’s linkage to aggregate predictors hierarchically. Clusters of predictors can be
created selecting a threshold for the distance.
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Figure F2. Metrics versus threshold used in the distance to create
clusters of variables. Given a threshold value, we obtain clusters of
variables that are used to perform cross-validation and compute the
metrics MAE, r2 and Sρ . The optimum threshold is the maximum
value that keeps the MAE as low as possible and the correlation
coefficients as high as possible. In this case, a value of 0.75 was
selected.
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Appendix G: Biomes
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Appendix H: Results at the global scale

Figure H1. Visitation rate (counts per minute) versus MM scores for bumblebees (using the configuration pollinator activity), at the global
scale. We highlight different biomes with colours.

Figure H2. Visitation rate (counts per minute) versus MM scores for other wild bees (using the configuration pollinator activity), at the
global scale. We highlight different biomes with colours.
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Appendix I: Results at the local scale

Figure I1. Spearman coefficient obtained comparing, for every study individually, predictions and observations, for the pollinator activity
MM configuration (bumblebees and other wild bees) and the ML regressor Bayesian ridge (BayR). We show the results for different levels
of the following: (a) landscape standardized variance, computed as the variance divided by the squared mean of the MM scores; (b) farm
management practices; and (c) pollinator dependency. The dashed red line, at Sρ = 0.2, is set as an arbitrary threshold for moderate agreement
between model and observations. Bin thresholds for landscape standardized variance have been set to values that yield the same number of
studies in every bin (taking the MM dataset as the reference because the dataset used for the evaluation of the ML models only includes the
studies present in the test set). IPM denotes integrated pest management.

Code and data availability. The models’ source code and the
prepared input datasets are accessible in an open repository
(https://doi.org/10.5281/zenodo.7909258, Gimenez-Garcia, 2023).

Author contributions. Conceptualization and methodology were
developed by AM, IB, AAP and AGG. Data curation, formal anal-
ysis, software development and visualization were performed by
AAP and AGG. Funding acquisition and supervision were carried
out by AM and IB. The original draft was prepared by AGG. AM,
IB, AAP, SB, JLK, VH, BAW, GS, MM, ME, JFC, JH, PC, GNP,
JMH, SC, BIS, VW, SJ, BMF, FGH, DRA, CSS, MO, VB, DJB,
AMK, NKJ, RIAS, MA, CCN, ADO’R, DWC, KLWB, DNNJ,
LAG, LS, YLD, BD, JGdEC, AL, GKSA, NER, SK, MD, WvdW
and HGS reviewed the draft and collected the observational polli-
nator data used in this work.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Elizabeth M. Alejandre and the
co-authors of the study that she leads for sharing their results re-
garding the characterization factors to assess the land cover scores
used here. We thank Francisco de Paula Molina for his collaboration
in the elaboration of lookup tables for the MMs, which were a key
part of this work. We thank Daniel Montesinos for his constructive
feedback and insightful comments.

Financial support. This research has been supported by the
2017–2018 Belmont Forum and BiodivERsA joint call for research

https://doi.org/10.5194/we-23-99-2023 Web Ecol., 23, 99–129, 2023

https://doi.org/10.5281/zenodo.7909258


124 A. Giménez-García et al.: Pollination supply models from a local to global scale

proposals, under the BiodivScen ERA-NET Cofund programme;
the funding organizations AEI, NWO, ECCyT and NSF; the Span-
ish State Research Agency through María de Maeztu Unit of Ex-
cellence accreditation (MDM-2017-0714); the Basque Government
BERC programme; the Comunidad de Madrid through the call Re-
search Grants for Young Investigators from Universidad Politécnica
de Madrid; the European Union FEDER Interreg Sudoe programme
(SOE1/P5/E0129); the Research Foundation – Flanders (FWO)
and Special Research Fund of Ghent University (BOF); INIA-
RTA2013-00139-C03-01 (MinECo and FEDER) and PCIN2014-
145-C02-02 (MinECo; EcoFruit project BiodivERsA-FACCE2014-
74); the Global Environmental Facility–United Nations Environ-
ment Programme–Food and Agricultural Organization Global Polli-
nation Project; the INTA Structural Project “Development of the or-
ganized, sustainable and competitive beekeeping sector (2019-PE-
E1-I017-001)”; the Portuguese national research funding agency
(FCT, contract IF/00001/2015); the Maria Zambrano International
Talent Recruitment Programme funded by the Spanish Ministry
of Universities; a Royal Commission for the Exhibition of 1851
Research Fellowship; the Brazilian National Council for Scien-
tific and Technological Development (Conselho Nacional de De-
senvolvimento Científico e Tecnológico, CNPq, no. 308358/2019-
8); the Philippines Department of Agriculture, Bureau of Agricul-
tural Research; the USDA NIFA Specialty Crop Research Initiative,
from Project 2012-51181-20105: Developing Sustainable Pollina-
tion Strategies for U.S. Specialty Crops; the Felix Trust; the United
States Department of Agriculture, National Institute for Food and
Agriculture, through the Specialty Crop Research Initiative projects
2012-01534 (Developing Sustainable Pollination Strategies for U.S.
Specialty Crops) and PEN04398 (Determining the Role of and Lim-
iting Factors Facing Native Pollinators in Assuring Quality Ap-
ple Production in Pennsylvania; a Model for the Mid-Atlantic Tree
Fruit Industry); the State Horticultural Association of Pennsylva-
nia; the Alexander von Humboldt Foundation; the German Research
Foundation; the German Academic Exchange Service; USDA NIFA
SCRI (PEN04398) and USDA NIFA (ARK02527 ARK02710); Sci-
ence Foundation Ireland; the Irish Research Council, Environmen-
tal Protection Agency and Eva Crane Trust; CNPq; the Global En-
vironmental Facility (GEF); the Food and Agriculture Organiza-
tion of the United Nations (FAO); the United Nations Environ-
ment Programme (UNEP); the Brazilian Biodiversity Fund (Fundo
Brasileiro para a Biodiversidade, FUNBIO); the Ontario Ministry of
Agriculture, Food and Rural Affairs (OMAFRA grant UofG2015-
2466); the initiative Food from Thought: Agricultural Systems for
a Healthy Planet, funded by the Canada First Research Excellence
Fund (grant 000054); the Rebanks Family Chair in Pollinator Con-
servation by the Weston Family Foundation; the North-South Cen-
tre; ETH Zürich; the Mercator Foundation Switzerland through the
ETH Zürich World Food System Center; and the Swedish Research
Council Formas.

Review statement. This paper was edited by Daniel Montesinos
and reviewed by two anonymous referees.

References

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch,
K. C.: TerraClimate, a high-resolution global dataset of monthly
climate and climatic water balance from 1958–2015, Scientific
Data, 5, 170191, https://doi.org/10.1038/sdata.2017.191, 2018.

Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., and
Klein, A. M.: Long-Term Global Trends in Crop Yield and
Production Reveal No Current Pollination Shortage but In-
creasing Pollinator Dependency, Curr. Biol., 18, 1572–1575,
https://doi.org/10.1016/j.cub.2008.08.066, 2008.

Aizen, M. A., Aguiar, S., Biesmeijer, J. C., Garibaldi, L. A., In-
ouye, D. W., Jung, C., Martins, D. J., Medel, R., Morales,
C. L., Ngo, H., Pauw, A., Paxton, R. J., Sáez, A., and Sey-
mour, C. L.: Global agricultural productivity is threatened by
increasing pollinator dependence without a parallel increase
in crop diversification, Glob. Change Biol., 25, 3516–3527,
https://doi.org/10.1111/gcb.14736, 2019.

Alejandre, E. M., Scherer, L., Guinée, J. B., Aizen, M. A., Al-
brecht, M., Balzan, M. V., Bartomeus, I., Bevk, D., Burkle, L. A.,
Clough, Y., Cole, L. J., Delphia, C. M., Dicks, L. V., Garratt,
M. P., Kleijn, D., Kovács-Hostyánszki, A., Mandelik, Y., Pax-
ton, R. J., Petanidou, T., Potts, S., Sárospataki, M., Schulp, C. J.,
Stavrinides, M., Stein, K., Stout, J. C., Szentgyörgyi, H., Var-
nava, A. I., Woodcock, B. A., and van Bodegom, P. M.: Char-
acterization Factors to Assess Land Use Impacts on Pollinator
Abundance in Life Cycle Assessment, Environ. Sci. Technol., 57,
3445–3454, https://doi.org/10.1021/acs.est.2c05311, 2023.

Allen-Perkins, A., Magrach, A., Dainese, M., Garibaldi, L. A.,
Kleijn, D., Rader, R., Reilly, J. R., Winfree, R., Lundin, O., Mc-
Grady, C. M., Brittain, C., Biddinger, D. J., Artz, D. R., Elle,
E., Hoffman, G., Ellis, J. D., Daniels, J., Gibbs, J., Campbell,
J. W., Brokaw, J., Wilson, J. K., Mason, K., Ward, K. L., Gun-
dersen, K. B., Bobiwash, K., Gut, L., Rowe, L. M., Boyle, N. K.,
Williams, N. M., Joshi, N. K., Rothwell, N., Gillespie, R. L.,
Isaacs, R., Fleischer, S. J., Peterson, S. S., Rao, S., Pitts-Singer,
T. L., Fijen, T., Boreux, V., Rundlöf, M., Viana, B. F., Klein, A.-
M., Smith, H. G., Bommarco, R., Carvalheiro, L. G., Ricketts,
T. H., Ghazoul, J., Krishnan, S., Benjamin, F. E., Loureiro, J.,
Castro, S., Raine, N. E., de Groot, G. A., Horgan, F. G., Hipólito,
J., Smagghe, G., Meeus, I., Eeraerts, M., Potts, S. G., Kremen,
C., García, D., Miñarro, M., Crowder, D. W., Pisanty, G., Man-
delik, Y., Vereecken, N. J., Leclercq, N., Weekers, T., Lindstrom,
S. A. M., Stanley, D. A., Zaragoza-Trello, C., Nicholson, C. C.,
Scheper, J., Rad, C., Marks, E. A. N., Mota, L., Danforth, B.,
Park, M., Bezerra, A. D. M., Freitas, B. M., Mallinger, R. E.,
Oliveira da Silva, F., Willcox, B., Ramos, D. L., D. da Silva e
Silva, F., Lázaro, A., Alomar, D., González-Estévez, M. A., Taki,
H., Cariveau, D. P., Garratt, M. P. D., Nabaes Jodar, D. N., Stew-
art, R. I. A., Ariza, D., Pisman, M., Lichtenberg, E. M., Schüepp,
C., Herzog, F., Entling, M. H., Dupont, Y. L., Michener, C. D.,
Daily, G. C., Ehrlich, P. R., Burns, K. L. W., Vilà, M., Robson,
A., Howlett, B., Blechschmidt, L., Jauker, F., Schwarzbach, F.,
Nesper, M., Diekötter, T., Wolters, V., Castro, H., Gaspar, H.,
Nault, B. A., Badenhausser, I., Petersen, J. D., Tscharntke, T.,
Bretagnolle, V., Willis Chan, D. S., Chacoff, N., Andersson, G.
K. S., Jha, S., Colville J. F., Veldtman, R., Coutinho, J., Bianchi,
F. J. J. A., Sutter, L., Albrecht, M., Jeanneret, P., Zou, Y., Averill,
A. L., Saez, A., Sciligo, A. R., Vergara, C. H., Bloom, E. H.,

Web Ecol., 23, 99–129, 2023 https://doi.org/10.5194/we-23-99-2023

https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1016/j.cub.2008.08.066
https://doi.org/10.1111/gcb.14736
https://doi.org/10.1021/acs.est.2c05311


A. Giménez-García et al.: Pollination supply models from a local to global scale 125

Oeller, E., Badano, E. I., Loeb, G. M., Grab, H., Ekroos, J.,
Gagic, V., Cunningham, S. A., Åström, J., Cavigliasso, P., Trillo,
A., Classen, A., Mauchline, A. L., Montero-Castaño, A., Wilby,
A., Woodcock, B. A., Sidhu, C. S., Steffan-Dewenter, I., Vo-
giatzakis, I. N., Herrera, J. M., Otieno, M., Gikungu, M. W.,
Cusser, S. J., Nauss, T., Nilsson, L., Knapp, J., Ortega-Marcos,
J. J., González, J. A., Osborne, J. L., Blanche, R., Shaw, R. F.,
Hevia, V., Stout, J., Arthur, A. D., Blochtein, B., Szentgyorgyi,
H., Li, J., Mayfield, M. M., Woyciechowski, M., Nunes-Silva, P.,
Halinski de Oliveira, R., Henry, S., Simmons, B. I., Dalsgaard,
B., Hansen, K., Sritongchuay, T., O’Reilly, A. D., Chamorro Gar-
cía, F. J., Nates Parra, G., Magalhães Pigozo, C., and Bartomeus,
I.: CropPol: A dynamic, open and global database on crop pol-
lination, Ecology, 103, e3614, https://doi.org/10.1002/ecy.3614,
2022.

Becher, M. A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P. J.,
and Osborne, J. L.: BEEHAVE: A systems model of hon-
eybee colony dynamics and foraging to explore multifacto-
rial causes of colony failure, J. Appl. Ecol., 51, 470–482,
https://doi.org/10.1111/1365-2664.12222, 2014.

Becher, M. A., Twiston-Davies, G., Penny, T. D., Goulson, D.,
Rotheray, E. L., and Osborne, J. L.: Bumble-BEEHAVE: A sys-
tems model for exploring multifactorial causes of bumblebee
decline at individual, colony, population and community level,
J. Appl. Ecol., 55, 2790–2801, https://doi.org/10.1111/1365-
2664.13165, 2018.

Bommarco, R., Kleijn, D., and Potts, S. G.: Ecolog-
ical intensification: harnessing ecosystem services
for food security, Trends Ecol. Evol., 28, 230–238,
https://doi.org/10.1016/j.tree.2012.10.012, 2013.

Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M.,
Bertels, L., and Smets, B.: Copernicus Global Land
Cover Layers – Collection 2, Remote Sens., 12, 1044,
https://doi.org/10.3390/rs12061044, 2020.

Burkle, L. A., Marlin, J. C., and Knight, T. M.: Plant-
Pollinator Interactions over 120 Years: Loss of Species,
Co-Occurrence, and Function, Science, 339, 1611–1615,
https://doi.org/10.1126/science.1232728, 2013.

Cassman, K. G., Grassini, P., and van Wart, J.: Crop Yield
Potential, Yield Trends, and Global Food Security in
a Changing Climate, in: Handbook of Climate Change
and Agroecosystems, Imperial College Press, 37–51,
https://doi.org/10.1142/9781848166561_0004, 2010.

Corbet, S. A., Fusell, M., Ake, R., Fraser, A., Gunson, C.,
Savage, A., and Smith, K.: Temperature and the polli-
nating activity of social bees, Ecol. Entomol., 18, 17–30,
https://doi.org/10.1111/j.1365-2311.1993.tb01075.x, 1993.

Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bar-
tomeus, I., Bommarco, R., Carvalheiro, L. G., Chaplin-Kramer,
R., Gagic, V., Garibaldi, L. A., Ghazoul, J., Grab, H., Jonsson,
M., Karp, D. S., Kennedy, C. M., Kleijn, D., Kremen, C., Lan-
dis, D. A., Letourneau, D. K., Marini, L., Poveda, K., Rader, R.,
Smith, H. G., Tscharntke, T., Andersson, G. K. S., Badenhausser,
I., Baensch, S., Bezerra, A. D. M., Bianchi, F. J. J. A., Boreux, V.,
Bretagnolle, V., Caballero-Lopez, B., Cavigliasso, P., Ćetković,
A., Chacoff, N. P., Classen, A., Cusser, S., da Silva e Silva, F. D.,
de Groot, G. A., Dudenhöffer, J. H., Ekroos, J., Fijen, T., Franck,
P., Freitas, B. M., Garratt, M. P. D., Gratton, C., Hipólito, J.,
Holzschuh, A., Hunt, L., Iverson, A. L., Jha, S., Keasar, T., Kim,

T. N., Kishinevsky, M., Klatt, B. K., Klein, A.-M., Krewenka,
K. M., Krishnan, S., Larsen, A. E., Lavigne, C., Liere, H., Maas,
B., Mallinger, R. E., Pachon, E. M., Martínez-Salinas, A., Mee-
han, T. D., Mitchell, M. G. E., Molina, G. A. R., Nesper, M., Nils-
son, L., O’Rourke, M. E., Peters, M. K., Plećaš, M., Potts, S. G.,
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