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Summary

1. Hierarchical clustering of molecular data is commonly used for estimation of species diversity in all forms of

life. Parameters appropriate for species-level clustering are usually derived from reference data and applied for

the delineation of sequences of unknown species membership, although it is not clear how this should be carried

out in amultilocus scenario.

2. We introduce a novel means of concurrent clustering parameter optimization and delineation for multilocus

data. A simulated annealing heuristic search is performed, whereby clustering thresholds are independently var-

ied for each locus, but optimized according to the recovery of expected taxonomic species globally over loci. For

each iteration of the search, one or more loci are randomly selected and a different threshold is separately pro-

posed to cluster each, then the loci are linked to form global species units. Where the set of thresholds group the

reference (species labelled) data with high taxonomic congruence, they are adopted for clustering of the subject

(nonlabelled) sequences into global molecular operational taxonomic units (global MOTU). Four mined test

data sets composed of both reference and subject sequences are combined with a newly sequenced three gene

Apoidea data set, and subject to the proposedmethod.

3. Even optimizing four loci and thousands of sequences, the approach rapidly convergences on a set of parame-

ters with maximal optimality score, although the method masks a high degree of incongruence, and does not

always converge on a single set of thresholds. For example, of the 476Apoidea sequences, 70 globalMOTUwere

inferred over the heuristic search, although the number of single geneMOTUweremuch lower for the 28SRNA

locus, and a range of equally optimal clustering thresholds were observed for the CytB gene.

4. Wedemonstrate the approach as a scalable species delineation solution for heterogeneous data sets composed

of incompletely and inconsistently labelled data from public DNA data bases, for newly sequenced multilocus

data, or both. The delineation over a heuristic search of clustering parameters facilitates the estimation of species

diversity in multilocus data, giving species estimates that take into account uncertainty regarding choice of clus-

tering thresholds.

Key-words: Apoidea, heuristic clustering, incongruence, MOTU, multilocus clustering, simulated

annealing, species delineation

Introduction

The delineation of species diversity has benefitted from the

development of many methods that utilize molecular sequence

variation (Ferguson 2002; Blaxter, Elsworth & Daub 2004;

Schloss & Handelsman 2005; Pons et al. 2006; Knowles &

Carstens 2007; Powell et al. 2011). In the phenetic approach to

sequence-based species clustering, sequences are grouped

where they exhibit a relative or absolute level of similarity

which is deemed high, for example, grouping sequence pairs as

a single putative species if they have <2 base differences

(Blaxter et al. 2005), <0�5% divergence (Floyd et al. 2002) or

<10x the divergence usually observed in conspecifics (Hebert

et al. 2004). While there is some opposition to phenetic species

clustering due to theoretical aspects and features of biology

(Ferguson 2002;Meier et al. 2006; Vogler &Monaghan 2006),

it remains popular. This is because implementation is some-

what straightforward, requiring no multiple sequence

alignment, sequence evolutionary model, prior population

assignments, nor phylogenetic interference, and so tends to be

used particularly where the data set is large or heterogeneous

(e.g. Schloss &Handelsman 2005; Hibbett et al. 2011).*Correspondence author. E-mail: zhucd@ioz.ac.cn
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Species clustering has historically been performed primarily

on single-locus data sets (Stackebrandt & Goebel 1994; Huge-

nholtz, Goebel & Pace 1998; Hebert, Ratnasingham &

DeWaard 2003; O’Brien et al. 2005;Nilsson et al. 2009). How-

ever, the increase in both species and genomic coverage from

the accumulation of public sequence data means that multilo-

cus data will be more frequently available. Progress has been

made on sequence-based species delineation of multilocus data

in a model-based phylogenetic framework (Liu et al. 2008;

Heled & Drummond 2010; O’Meara 2010; Yang & Rannala

2010), although as suchmethods are computationally intensive

and often have strict sampling assumptions, they are less appli-

cable both for large data sets, or data sets in which the sam-

pling is incomplete. The latter is a natural feature of data

bases, which are a complex assemblage of species and speci-

mens, labelled in a number of different conventions, and repre-

sented by gene sequences which overlap to various degrees.

Any method for species-level clustering of multilocus data

sets has to address the effect of genomic variation in substitu-

tion rate, as this results in differences across loci of the param-

eters appropriate for species clustering (Cognato 2006). The

standard method to infer the parameters is clustering of data

in which species identities are already known (reference data).

For validation of species units produced under a given cluster-

ing parameter, a measure of the similarity of molecular

species clusters to morpho-species groups is required, of

which the Rand Index and derived measures have been used

previously (G€oker et al. 2009; Sauer & Hausdorf 2012). The

optimal values are those in which the molecular clusters of

the reference data set most resemble the taxonomic species

(G€oker et al. 2009; Hibbett et al. 2011), and these can then be

used to cluster sequences in which species diversity is

unknown.

This procedure can be performed for each locus in a multi-

gene data set. However, two obstacles are encountered, the for-

mation of global species units from single-locus units, and

determination of the most appropriate set of thresholds, which

are not necessarily equivalent to those separately derived for

loci. Firstly, a complex relationship between species clusters at

various genes can exist, where incongruence exists in the form

of (i) a given taxonomic species being split into more than one

molecular operational taxonomic units (MOTU), (ii) a given

MOTU containing more than a single taxonomic species or

species ID, (iii) different MOTU being formed at different

genes as a result of inconsistent sampling, stochastic effects or

differing signal. The difficulty in across-locus combination of

incongruent MOTU can be overcome using graph-matching

algorithms (Chesters &Vogler 2013), which permitsmultilocus

clustering for the purpose of global threshold assessment and

formation of MOTU. Secondly, when assessed for global

MOTU, the optimal clustering parameters are not expected to

be equivalent to unmatched species units. This is illustrated by

the toy example in Fig. 1(e,f), with calculated Rand index. In

this example, where MOTU and species from different genes

are unlinked, the Rand Index favours stringent clustering

(Fig. 1a), whereas theRand index from linkedMOTU favours

permissive clustering (Fig. 1d). Finally, as using multiple loci

requires the assessment of many combinations of parameters,

the computational complexity of inferring optimal values is

compounded. For example, where 40 different thresholds (96–

100% with step size of 0�1, as used herein) are used on each of

three loci, the comparison of all would require assessment of

403 different parameter combinations. This parameter space

increases exponentially with the number of loci, necessitating

the use of heuristic solutions for obtaining a reasonable set of

global thresholds.

Herein, we extend earlier work, primarily to gain thresh-

olds more appropriate for global MOTU, while reducing the

reliance of diversity estimates on specific thresholds. A heu-

ristic search is implemented (Fig. 2) to obtain reasonable

global-clustering parameter estimates for a set of individuals

(Fig. 2A). Starting from random values, thresholds are pro-

posed (Fig. 2B) for which the resulting species-level clusters

(Fig. 2C) are matched between loci (Fig. 2D) and assessed

according to congruence of the reference partition with the

species labels (Fig. 2E). We use the simulated annealing

search (Osman & Kelly 1996), in which solutions of reduced

optimality (lower taxonomic congruence) are initially

accepted. This provides the potential to escape local optima

by traversing regions of lower optimality and increasing the

likelihood of obtaining better global solutions. Clustering

of unidentified data is performed simultaneously to that of

the species labelled data during the heuristic search, giving a

distribution of delineations over a number of different

thresholds. The search is applied both to mined unidentified

data and newly generated data set of Chinese Apoidea, dem-

onstrating a multilocus species-clustering method with low

computational demand, and few assumptions on sampling

completeness.

Materials andmethods

MINED DATA SETS

Insect sequences were obtained for a number of loci densely sampled at

the species level. Two mitochondrial (COI and CytB) and two nuclear

(EF1a and 28S rRNA) loci were selected, all with broad spectrumprim-

ers available for the insects, thus being favoured for species studies in

this group. The invertebrate release (as of July 2012) was downloaded

from GenBank (http://ftp.ncbi.nih.gov/genbank/), insect sequences

were isolated and used to form a local data base. The data base was

searched using the following queries: EF1a, Bombus hypocrita

(JF751028),Bactrocera dorsalis (GU339154),Dendroctonus ponderosae

(BT126614),Hypermnestra helios (DQ351106), Cryptocercus punctula-

tus (JQ686946), Agmina diriwi (GU966919); COI barcode fragment,

Cycnia tenera (AF549611), Judolia montivagans (AY165712),Oecophy-

lla smaragdina (AY165697), Empis sp. (AY165709), Gryllus pennsylva-

nicus (AY165657), Isogenoides frontalis (AY165725), Parcoblatta

pensylvanica (AY165718), Ameletus andersoni (AY165698);CytB, Apis

mellifera (NC_001566), Daphnia pulex (NC_000844), Tribolium casta-

neum (NC_003081), Bombyx mori (AF149768); 28S, D. melanogaster

(M21017), B. mori (AY038991), T. castaneum (HM156703), D. pulex

(FJ177015),A. mellifera (AY703551). Insect sequences homologous to

these queries were identified using UCLUST v4.2.66 (Edgar 2010), with

an e-value cut-off of 1e-6. Hit subsequences were then extracted using
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BLASTDBCMD v.2.2.25 (Camacho et al. 2009) and a custom Perl wrapper

script. Finally, we identified four broad scale taxonomic groups to be

used as test data sets. Groups were selected using an automated proce-

dure to maximize (i) common species between, (ii) unidentified

sequences within and (iii) intraspecific data within, various combina-

tions of the genes listed above.

SAMPLE COLLECTION, DNA EXTRACTION AND

SEQUENCING

In addition to the mined data, we generated a multilocus Apoidea data

set from an ongoing diversity monitoring study of Orchard insects.

Insects were collected by malaise trapping in Beijing, China

(40°06�239N, 115°54�773E), between April 2011 and September 2011.

Approximately 250 Apoidea specimens were subject to DNA sequenc-

ing for the COI, CytB and 28S genes. Genomic DNA was extracted

using the QIAGENDNeasy tissue extraction kit (QIAGEN, Valencia,

CA,USA). The COI andCytB genes were amplified via PCRusing LA

Taq (TAKARA) and 28S usingMightyAmp (TAKARA). The primer

pair LCO1490 (5′-GGTCA ACAAA TCATA AAGAT ATTGG-3′)

and HCO2198 (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′)

(Folmer et al. 1994) were used to amplify COI. The 28S gene utilized

the primer pairs D2-3549F (5′-AGTCG TGTTG CTTGA TAGTG

CAG-3′) and D2-4068R (5′-TTGGTCCGTG TTTCAAGACGGG-

3′) (Campbell, Steffen-Campbell & Werren 1993) or D2-3566F (5′-

TGCAG CTCTA AGTTG GTGGT-3′) (Gillespie et al. 2005) and

D2-4057R (5′-TCAAG ACGGG TCCTG AAAGT-3′) (Heraty et al.

2004), and CytB utilized the primer pair CytB F (5′-CGWTT AATTC

ATATA AATGG-3′) and CytB R (5′-TATCA TTCWG GTTTA

ATATG-3′) (Koulianos 1999). All amplification reactions were per-

formed in a total volume of 50 lL, in which COI and CytB reactions

included 5 lL 109 LA buffer, 5 lL MgCl2 (2�5 mM), 5 lL dNTP

(2�5 mM), 1 lL each primer (10 mM), 0�5 lL LA Taq polymerase

(5 U lL�1), 2–4 lL template DNA and distilled water up to 50 lL.
The 28S reaction included 25 lL MightyAmp Buffer version 2, 1 lL
MightyAmp DNA Polymerase (1�25 U lL�1), 1 ll of each primer

(10 mM), 2–4 lL template DNA and distilled water to 50 lL. The
PCR conditions were as following: 94°C for 2 min, 35 cycles of 94°C

for 30 s, 48–50°C for 50 s, 72°C for 1 min and a final extension at 72°C

for 10 min for the COI and CytB reactions; 98°C for 2 min, 35 cycles

of 98°C for 10 s; 58°C for 15 s; 68°C for 1 min; and a final extension at

68°C for 5 min for the 28S reaction. Sequencing was performed with

an ABI3130 sequencer. Sequences are made publically available (see

DataAccessibility section).

FORMING GLOBAL MOTU FROM MULTIPLE CLUSTERED

LOCI

The molecular data were clustered into species-level units according to

sequence similarity. Pairwise percent identities were obtained for

sequences within each locus by all-against-all alignment using UCLUST

(Edgar 2010), and then used for single-linkage clustering under a range
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Fig. 1. Contrasting different ways of calculating the Rand Index, for comparing the similarity inMOTU groups and taxonomic groups. These two

types of groupings can be treated independently between loci (a, b) or after locus matching (c, d). Species clusters are formed using two loci in all

cases, where Gene 1 is given in a red shaded box, and gene 2 in the blue shaded box. Linkage clustering is performed using constant thresholds for

gene 1, whereas clustering parameters are varied for gene 2, with stringent (left blue) and permissive (right blue) thresholds used, resulting in either

four clusters (left blue) or two clusters (right blue). (e, f) Give calculation of the Rand index. Adjusted versions of the Rand Index (e.g. HA Rand

Index) give an equivalent pattern.
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of thresholds. Linkage clustering was performed using a Perl script

optimized for BLAST or UCLUST all-against-all outputs (script is made

available, seeDataAccessibility section).

Where multiple gene fragments are independently clustered into spe-

cies units, the formation of global MOTU requires the combination of

species clusters derived from the different genes. The presence of incon-

gruent clusters and different representative sampling for the genes pre-

vents straightforward combination of results. Chesters &Vogler (2013)

introduced a method for combination of such species clusters, using

graph algorithms. The method first identifies all possible links between

the first two genes (a link/edge occurs where a species cluster in one

gene contains a sequence ID identical to at least one sequence ID in a

cluster at the second gene). The links are then decomposed by identify-

ing the set in which most taxonomic links occur, by maximal cardinal-

ity matching, which is iterated over all loci. The method therefore

permits the formation of global MOTU from different loci even where

they are incongruent.

MULTI LOCUS CLUSTERING OPTIMIZATION AND

DELINEATION

Hierarchical clustering requires specification of separate parameters

for each locus. By clustering a reference data set under a range of

parameters, settings producing the highest taxonomic congruence

can be inferred and applied to delineate unidentified data. As a mea-

sure of taxonomic congruence we use the Hubert and Arabie

adjusted Rand index (hereafter, the HA Rand index) (Hubert &

Arabie 1985) as calculated by the Clues R module (R Development

Core Team 2008; Chang et al. 2010). Assessing congruence of vari-

ous parameters is a nonlinear problem where multiple loci are used,

therefore, we perform a heuristic search in which a global optimal

set of clustering parameters is sought. A flow chart illustrating the

search is given in Fig. 2. Starting from random states (a random

clustering threshold for each locus), a Monte Carlo chain is run in

which new states are proposed (Fig. 2B), corresponding to a set of
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parameters
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Fig. 2. Flow chart of the heuristic search for three loci (red, blue and white boxes). (A) The parameter optimization is carried out on species labelled

sequences. Toy sequences here are illustrated with a species label (spA, spB, spD-spF) followed by accession number, with some species havingmore

than a single sequence present. In a single iterationN of the search (B–E), (B) a set of clustering parameters (Tj = linkage threshold for locus j) is pro-

posed for each of the loci, (C) the set of species clusters under these parameters is retrieved, (D) species units arematched between loci, forming global

MOTU, (E) The set of global MOTU is assessed for taxonomic congruence according to the HARand Index, and the proposed clustering parame-

ters adopted if the congruence is improved, adopted if congruence is worsened at a probability determined by the annealing temperature, and rejected

otherwise. The optimization is run on the named species, although clustering of the unidentified sequences is performed concurrently, under the

parameters adopted through the search.
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clusters of individuals (Fig. 2C), which are subsequently linked by

partite matching (Fig. 2D), then assessed for taxonomic congruence

(Fig. 2E). Multiple simulated annealing searches were performed for

each test data set, optimizing clustering thresholds according to taxo-

nomic congruence of identified sequences, to delineate unidentified

and newly generated data. The simulated annealing solution was

implemented in Perl (MLCO.pl: multi locus clustering optimization)

and is made freely available (see Data Accessibility).

We implement a cluster-basedmethod of species diversity estimation

that incorporates uncertainty in regard to threshold. The use of a

single-clustering threshold is problematic, as it is likely that multiple

peaks exist, which lack significant difference in optimality score. This is

compoundedwheremultiple loci are clustered as the parameter space is

greatly increased. We here perform global species clustering of the

unidentified sequences concurrent with that of the reference data set

during the heuristic search. At each iteration of the heuristic search, the

current optimal set of thresholds is used to form global MOTU of the

unidentified sequences. This gives a distribution of delineations over

the various parameter combinations formed during the search. Species

diversity estimates are made using MOTU delineations from the sta-

tionary phase, which permits the incorporation of the uncertainty in

species delineation and allows estimation of species diversity without

reliance on specific thresholds.

Results

Insect sequences belonging to four gene fragments were mined

from GenBank, totalling 159 221 (COI), 12 108 (CytB),

16 960 (EF1a) and 14 627 (28S). From these files, we obtained

reference data sets for specific taxonomic groups. Reference

data sets were obtained according to three criteria; those with a

relatively high number of (i) unidentified sequences for each of

the input loci, (ii) species in which most of the input loci are

sequenced and (iii) named species which have multiple

sequences available (i.e. intraspecific data). Based on these

criteria, we filtered the taxa; Apoidae (Hymenoptera) for

COI+CytB+28S, Formicinae (Hymenoptera) for COI+
CytB+28S+EF1a, Satyrinae (Lepidoptera) for COI+CytB+
EF1a and Chrysomelidae (Coleoptera) for COI+CytB+EF1a.
The unidentified sequences numbered 364, 546, 237 and 217

for the Apoidae, Formicinae, Satyrinae and Chrysomelidae,

respectively (full details of the mined reference data sets are

given in Table 1). The Apoidae data set was supplemented

with newly generated sequences from a regional species diver-

sity study. The sequencing was incomplete for the majority of

specimens, with all three loci obtained for 61. In total, 476

sequences were obtained (164 COI, 136 CytB, 176 28S) over

c. 250 specimens. All of the unidentified data (both the mined

unidentified sequences and the newly sequencedApoidae) were

subject tomolecular species-level clustering.

Single-linkage clustering was performed at thresholds vary-

ing between 96 and 100% identity in steps of 0�1, then a heuris-
tic search of the clustering parameter space was made in which

the taxonomic congruence of the (multilocus) species clusters

to the reference data was maximized. We first optimized the

heuristic search parameters using the Satyrinae data set, this

being the only data set problematic for convergence in

preliminary analyses. The search was tuned by varying the

decay parameter. This parameter effectively increases or

decreases the phase of the search in which broad regions of

parameter space are covered. An appropriate decay is depen-

dent on many features of the data set, such as the number of

Table 1. Mined test data sets. Data sets were selected for various taxa, loci and number of loci, based on criteria of composition given in the text.

Superfamily Apoidae contains an additional row giving data newly sequenced as part of this study. ‘Unlabelled’ refers to lack of species-level

taxonomic annotation of sequence

COI CytB 28S EF1a

Loci:

1 2 3 4

SuperfamilyApoidae

Total sequences 2123 417 943 NA

Unlabelled sequences 146 50 168 NA

Laboratory-generated sequences 164 136 176 NA

Species with >1 sequence 320 46 87 NA

Number of species with… 1165 301 17 NA

Subfamily Formicinae

Total Sequences 1022 485 135 275

Unlabelled sequences 342 74 47 83

Species with >1 sequence 82 42 10 42

Number of species with… 142 120 45 28

Subfamily Satyrinae

Total Sequences 8171 428 NA 2495

Unlabelled sequences 138 22 NA 77

Species with >1 sequence 987 60 NA 417

Number of species with… 736 1329 82 NA

Family Chrysomelidae

Total Sequences 1451 472 NA 561

Unlabelled sequences 133 42 NA 42

Species with >1 sequence 139 32 NA 98

Number of species with… 454 235 19 NA
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variables, but visual inspection of searches under several arbi-

trary values gives reasonable values. Figure 3 shows the result

of varying the simulated annealing temperature decay parame-

ter over 2000 generations, with four independent runs for each

setting. All runs attained identical optimal taxonomic congru-

ence when using decay values of 0�990, 0�995 and 0�998,
whereas convergence was not attained within the 2000 genera-

tions at a temperature decay of 0�9995. At lower values (0�990,
0�995), the stationary phase of individual runs was ambiguous

based on visual assessment, therefore, we adopted default tem-

perature decay of 0�998, which results in a distribution inwhich
the stationary phase is most reliably identified.

Next, we assessed the impact of locus matching on parame-

ter optimization. By default, the calculation of the HA Rand

index wasmade onmolecular clusters in which loci were linked

bymultipartite matching (e.g. as in Fig. 1c,d), primarily to give

a global delineation and thus overall estimate of species diver-

sity. The analysis was repeated on unmatched data (e.g.

Fig. 1a,b), in which molecular species units were formed

within loci only. Figure 4 contrasts clustering parameters for

species clusters unmatched (Fig. 4a), and matched (Fig. 4b),

between loci. At the stationary phase, CytB is shown switching

between different thresholds whether loci are matched or not,

whereas a single optimal parameter is obtained for the other

two loci. The optimal parameters differ for the two genes

between the linked and unlinked searches, although not in the

way predicted under the simplified example in Fig. 1, indicat-

ing a more complex relationship. Where unlinked, the HA

Rand index favours thresholds of 97�1 for COI and c. 97�5 for
CytB, whereas this is increased to 99 for COI and c. 99�2 for

CytB, where linked.

A heuristic search for optimal clustering parameters was

performed on each of the four test data sets, with two indepen-

dent runs from random start thresholds. All runs reached the

stationary phase after c. 500 generations (as assessed by the

HA Rand Index), and most attain a single optimal score after

c. 1000 generations. The concurrent clustering of the reference

(identified) and subject (unidentified) data over the heuristic

search gave a distribution of delineations over a space of rea-

sonable parameter combinations. This is demonstrated in

Fig. 5, which gives the number of global MOTU formed from

the unidentified data at each step during the search. The search

phase prior to stationary was discarded, then species diversity

estimated according to the delineations remaining. The

MOTU delineations from the stationary phase are given in

Table 2. The number of species clusters was found to be stable

over this phase of the search, with an error margin of <1
MOTU in all cases. The majority of unidentified sequences are

likely derived from unique species, as indicated by the number

of species clusters. For example, the 342 (COI), 74 (CytB), 47
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Fig. 3. Tuning the decay of the temperature parameter during simulated annealing, using the Satyrinae data set. The x axis gives the generation dur-

ing the heuristic search for the global optimal clustering thresholds, whereas the y axis gives the HA Rand index of similarity between the global

molecular clusters and taxonomic species. Four decay values are shown, with four independent runs (indicated by point colour in the plot) of 2000

generations performed for each. Lower decay values lead to rapid reduction in temperature over the search, and thus, a shorter period inwhich broad

parameter space is covered.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 961–970

966 D. Chesters et al.



0 500 1000 1500 2000

24
0

26
0

28
0

30
0

32
0

34
0

36
0

Apoidea (3 loci)

Generation of heuristic search

N
um

be
r o

f g
lo

ba
l M

O
TU

0 500 1000 1500 2000

16
0

18
0

20
0

22
0

24
0

26
0

Formicinae (4 loci)

Generation of heuristic search

N
um

be
r o

f g
lo

ba
l M

O
TU

0 500 1000 1500 2000

60
80

10
0

12
0

Nymphalidae (3 loci)

Generation of heuristic search

N
um

be
r o

f g
lo

ba
l M

O
TU

0 500 1000 1500 2000

12
0

14
0

16
0

18
0

Chrysomelidae (3 loci)

Generation of heuristic search

N
um

be
r o

f g
lo

ba
l M

O
TU

Fig. 5. Number of global MOTU delineated from the unidentified data, for the four test data sets. Points are plotted for MOTU counts produced

under the parameters adopted at each generation of theMarkov chain. Two independent runs shown as coloured differently.

Table 2. Delineation results for data mined from Genbank, and newly produced herein. Number of species-level clusters both for individual loci

andmatched (global column) loci, based on the optimal clustering parameters. Error is given according to variance in number of species clusters dur-

ing the stationary phase of the heuristic search. Note dissimilarity in species estimates for individual loci is expected due to sampling variation, see

Discussion on core specimens

COI CYTB EF1a 28S Global

Apoidae

Mined clusters 172 � 0�19 75 � 0�4 NA 134 � 0 306 � 0�13
Lab clusters 54 � 0�05 41 � 0�16 NA 21 � 0 70 � 0�07

Formicinae

Mined clusters 158 � 0�0 59 � 0�0 72 � 0�0 16 � 0�0 212 � 0�0
Satyrinae

Mined clusters 68 � 0�00 13 � 0�00 51 � 0�00 NA 88 � 0�00
Chrysomelidae

Mined clusters 116 � 0�02 31 � 0�0 40 � 0�01 NA 154 � 0�05
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Fig. 4. Optimal clustering thresholds for COI (red), CytB (blue), EF1a (green), during a heuristic search in which the tRI is maximized. (a) results

where unlinked tRI is maximized. (b) gives thresholds where tRI is calculated from species clusters matched between loci and is adopted by default in

this study.
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(28S), 83 (EF1a) Formicinae sequences (Table 1) were clus-

tered into 158, 59, 70, 16 single-locus units (Table 2). Thus, the

species diversity represented in unidentified data may be quite

substantial. Further, many of the global MOTU have mem-

bers spanning multiple loci. In the case of Formicinae, the

MOTU from the four individual loci numbers 300 in total, but

where multipartite matching is performed, together these form

212 global MOTU. Again for global MOTU, the multilocus

delineation appears quite stable, with an error margin <1 for

all test data sets.

The global MOTU formed from the laboratory-generated

Apoidae data are illustrated in Fig. 6, with COI, CytB and 28S

data represented as white, blue and red segments. As is appar-

ent, much of the global species-level diversity in the Chinese

Apoidae sample is represented at the COI and CytB loci, with

many MOTU containing only sequences of these loci, in con-

trast to the 28S locus, in which are only present in 21 MOTU,

despite a greater number of sequences being used. Addition-

ally, the majority of the global MOTU consist of representa-

tives of more than one locus. This does not necessarily mean a

high level of congruence between loci, just that the method of

matching is effective in producing a high number of links

between genes. Species names are assigned where unambigu-

ous, that is, when a given MOTU contain unidentified data

and no more than a single-named species, which is not also

present in other MOTU. Of the 70 global MOTU from the

new Apoidea data set, 15 contained named GenBank derived

data, with the remaining 55 species units therefore probably

not yet represented on the public data base. Although the

incongruence in these 15 global MOTU was high, with taxo-

nomic species split overmultipleMOTU, andMOTU contain-

ing multiple species names. Thus, only four species names

(Megachile sidalceae, Osmia cornuta, O. taurus and Bombus

ignitus) could be assigned by association of the new and exist-

ing annotated data. Genus level assignments were given in the

remaining 11.

Discussion

Four mined data sets and 476 new Apoidea sequences were

used to demonstrate a method of species-level clustering for

multilocus data, while the consolidation of species units

formed from multiple loci has received little prior attention.

Setaro et al. (2012) recently conducted clustering parameter

optimization on a two-locus data set, by varying clustering

parameters at one locus, to maximize congruence in MOTU

with a second locus in which parameters were fixed. The opti-

mal parameters were then applied for estimating species diver-

sity in fungal ecosystems. While the utility of their approach is

delimitation based on internal criteria only (i.e. species discov-

ery), a limitation is that the loci remain unlinked, and thus glo-

bal diversity remains unknown.

In the current work, we address the difficulties in clustering

optimization ofmultilocus data, with a recently developed pro-

cedure for the formation of global species units. Species units

separately formed by linkage clustering multiple loci are subse-

quently combined using an algorithm that maximizes taxo-

nomic links, creating the set of global MOTU such as those

illustrated in Fig. 6. Formation of globalMOTU is performed

during each iteration of a heuristic search (Fig. 5), to optimize

clustering parameters on the reference data, while simulta-

neously delineating the unidentified data. Each locus is clus-

tered under a starting threshold by single linkage, then clusters

from each loci are matched by maximal cardinality. The

quality of threshold combination is assessed by determining

the similarity to taxonomic species clusters, as scored using

the HA Rand Index. New parameters are proposed, in

which improvements in HA Rand Index are always accepted,

and reduced HA Rand Index are accepted at a rate deter-

mined by the temperature. Where performing multiple inde-

pendent heuristic searches from random start thresholds

allows the attainment of a maximal optimality score to be

confirmed.

The proposed method lacks biological basis, perhaps char-

acteristic of phenetics in general, which has been discussed at

great length elsewhere (Ferguson 2002; Meier et al. 2006). The

use of such algorithmic solutions sidesteps what can be exten-

sive incongruence, and unintuitive results can be generated

when forming globalMOTU in this way. For example, it is dif-

ficult to immediately accord many of the MOTU presented in

Fig. 6 as derived from the data in the supplementary Table S1.

Specifically, by separately clustering loci into the initial species-

level clusters, a given specimen that possesses multiple frag-

ments may become subdivided among multiple MOTU, if

Rediviva
Ceratina

Osmia taurus
Ceratina
Ceratina
Bombus
Bombus
Bombus

Megachile
Xylocopa
Xylocopa

Megachile sidalceae
Bombus ignitus

Bombus
Osmia cornuta

Fig. 6. The 70 global MOTU delineated from a newly generated three

gene Apoidea data set. EachMOTU is represented as a pie chart, sized

relative to the number of sequences composing the MOTU, and col-

oured according to loci represented, where blue segments = CytB,

white = COI, red = 28S.MOTU are assigned taxonomic names based

on association of aMOTUwith species labelledGenBank data. Species

names are given where unambiguous, that is, where the MOTU con-

sists of (in addition to the newly generated data) no more than a single

labelled species name, andwhere this species name is not found in other

MOTU.Genus names are given otherwise.
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these loci give an incongruent signal. The splitting of individual

specimens among multiple global MOTU may complicate

some downstream applications, as the individuals become

fuzzy entities, at the behest of fully delineating the species-level

entities. The degree of such incongruence can be stated based

on a set of core specimens, with 61 of which all gene fragments

were sequenced. The number of species-level clusters formed

from these core specimens differ, with 21 in the case of COI, 20

for CytB, and 10 for 28S. This variation could be due to com-

plicating biological factors, or error in reconstruction of spe-

cies units from a lack of information content at the species

level. In the current case, this may suggest 28S is unsuitable for

species-level clustering by single linkage. Still, much unidenti-

fied data are routinely generated for many varied gene regions,

the incongruence is present between these genes, and so it is

necessary to use procedures such as these if the data are to be

utilized.

The approach described herein complements a number of

multilocus species delineation methods have been developed

recently that operate within a phylogenetic framework. The

latter are often restrictive in a way that can be problematic for

users of mined data sets. In particular, existing methods may

require a priori assignment of members to putative species

units (Yang & Rannala 2010; Ence & Carstens 2011), they

may assume a virtually complete sampling pattern (Lim, Balke

&Meier 2012) in which a representative sequence is present for

all members to be delineated, or they may limited by computa-

tions to the delineation of only dozens of members (Liu et al.

2008; Heled & Drummond 2010; O’Meara 2010). The

approach used here requires only the prior partitioning of

sequences into homologs and is applicable for data sets num-

bering well into the thousands. The rate-limiting step of this

protocol is not the heuristic search itself, but the calculation of

pairwise distances, of which computational complexity

increases quadratically with the number of sequences. There

are means to accelerate such computations where necessary

(Li, Jaroszewski & Godzik 2001; Rattei et al. 2010), and as

pairwise alignments are independent, they are inherently paral-

lelizable (e.g. Mathog 2003). Further, clustering based on pair-

wise similarity avoids the often uncertain and problematic

steps of multiple sequence alignment and phylogenetic infer-

ence, which can be a source of uncertainty and error in diver-

sity estimation (Sun et al. 2009). Finally, by delineating over a

distribution of parameters, it sidesteps an often disputed aspect

of species clustering; the selection of a specific threshold, which

is frequently cited as problematic for clustering. The clustering

threshold is the degree of similarity above which two sequences

are regarded to be conspecifics, but a specific threshold may

not be appropriate for all taxa (Meier, Zhang & Ali 2008) and

multiple peaks of similar optimalitymay exist. Here, uncertain-

ties with regard to threshold are accommodated in the estimate

of species diversity, through using a distribution of thresholds

over the heuristic search. Thus, heterogeneous multilocus data

sets can be clustered at the species level in a way practical for

further evolutionary analysis, while giving diversity estimates

with indication of error arising from selection of clustering

parameters.
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Additional Supporting Information may be found in the online version

of this article.

Table S1. Spreadsheet giving details of the 251 Apoidea specimens

sequenced as part of this study. Genbank accession numbers are given

where a locus was successively sequenced for the given specimen, with

blank entries indicating the locus was not sequenced. Different primer

combinations were used only with 28S, so primer names are listed for

this gene.
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