Biodiversity–ecosystem functioning research in Chinese subtropical forests

Keping Ma1, Jin-Sheng He2, Helge Brueelheide3,4, Alexandra-Maria Klein5, Xiaojuan Liu1,6 and Bernhard Schmid6,*

1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
2 Department of Ecology, College of Environmental Sciences, Peking University, Beijing 100871, China
3 Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06120 Halle, Germany
4 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, DeutscherPlatz 5e, 04103 Leipzig, Germany
5 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße 4, 79106 Freiburg, Germany
6 Department of Evolutionary Biology and Environmental Studies and Zürich–Basel Plant Science Center, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence address. Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. Tel: +41-44-635-5205; Fax: +41-44-635-5711; E-mail: bernhard.schmid@ieu.uzh.ch

Worldwide, forests provide habitat for a large diversity of plants, animals and microbes. At the same time, forest ecosystems are essential providers of multiple ecosystem services important for human well-being. However, the relationship between biodiversity and ecosystem functioning has only been little researched in forests and therefore its role for the functioning of forest ecosystems and their services is not yet understood. If results from comparable studies in other ecosystems are considered (e.g. Balvanera et al. 2006), it is conceivable that diverse forests would, for example, grow faster, produce more biomass, store more carbon and better maintain soil fertility and plant–insect interactions and functional stability than less diverse forests or monoculture tree plantations. The hypothesis that biodiversity increases and stabilizes interactions and functions is the common theme of the papers in the present issue of the Journal of Plant Ecology.

The first 4 of the 24 papers (Brezzi et al. 2017; Chi et al. 2017; Huang et al. 2017; Wang et al. 2017) use a unique comparative study design in which forest plots at a site in Southeast China have been selected according to different levels of tree species richness and stand age (Brueelheide et al. 2011). Tree diversity increases the amount of leaf litter (Huang et al. 2017) and plant resources for herbivorous insects (Brezzi et al. 2017). Differences among tree species in seasonal growth patterns were detected as one possible reason for complementary resource use in diverse plots (Chi et al. 2017). Other aspects of ecosystem functioning were more strongly influenced by stand age; this was the case for soil respiration, which declined with stand age (Wang et al. 2017). The following four papers (Guo et al. 2017; Shi et al. 2017; Tong et al. 2017; Zhang et al. 2017) expand the geographical range of the previous ones and demonstrate that species interactions within and between trophic levels are important drivers of population and community structure and thus affect biodiversity–ecosystem functioning relationships.

This special issue includes two papers that focus on methodological questions, which are pertinent to biodiversity–ecosystem functioning research. Weißbecker et al. (2017) provide sampling designs and guidelines for subsequent treatment of soil samples for later analysis of RNA and DNA of microbial communities. Schmid et al. (2017) show how linear- and mixed-model statistical approaches can be combined to analyze complex hierarchical data that typically arise in biodiversity–ecosystem functioning research.

The following nine articles (Bu et al. 2017; Eichenberg et al. 2017; Germany et al. 2017; Li et al. 2017a; Peng et al. 2017; Scholten et al. 2017; Staab et al. 2017; Sun et al. 2017; Yang et al. 2017) report first results from a large forest biodiversity experiment in Southeast China where more than 500 plots of 400 tree individuals each and ranging in biodiversity from monocultures to 2-, 4-, 8-, 16- and 24-species mixtures have been established according to nested extinction-scenario designs (Brueelheide et al. 2014). A most striking commonality among these papers is that already a few years after establishment...
there are strong and significant effects of planted tree diversity on multiple ecosystem functions including increased total leaf area (Peng et al. 2017), increased fine-root production (Sun et al. 2017), between-species belowground complementarity (Bu et al. 2017) and reduced insect visits to trees with extrafloral nectaries (Staab et al. 2017). Other functions such as herb-layer variables are only beginning to show a biodiversity signal (Germany et al. 2017) or are more influenced by edaphic or microclimatic variation across the experimental site (Scholten et al. 2017), e.g. shrub survival (Yang et al. 2017) and wood decomposition (Eichenberg et al. 2017).

The last five papers (Hahn et al. 2017a, 2017b; Li et al. 2017a, 2017b) of this special issue extend the biodiversity theme beyond species richness to genetic diversity. Whereas the first two papers show how genetic diversity of woody species is affected by stand age and other environmental conditions but not by species diversity, the following three papers report significant effects of genetic diversity on ecosystem functions, e.g. increased litter decomposition (Li et al. 2017b). Interactive effects between species and genetic diversity are also addressed in these three papers.

The aim of this special issue is to present an integrative view on different aspects of a common theme, biodiversity–ecosystem functioning research. The complexity of this theme requires the collaboration of many research groups, ideally on shared field sites and experiments such as in the present case in Southeast China. Obviously, forest experiments require long-term study and the mentioned experiment was only planted 7 years ago. Nevertheless, already within this short time biodiversity effects emerged. While the experimental study is being continued, differently aged natural forest plots could already shed some light on biodiversity effects in more mature forest ecosystems. This special feature shows that positive biodiversity–ecosystem functioning relationships have already developed at a very early stage of forest establishment. This finding is not only of basic interest for ecological research but also of relevance for reforestation and afforestation management. At the same time, the papers in this special issue provide a baseline against which future findings from biodiversity–ecosystem functioning research in forests can be compared.

REFERENCES


